Skip to main content

Sliding Mode State and Fault Estimation for Decentralized Systems

  • Chapter
  • First Online:
Book cover Variable-Structure Approaches

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

The interconnection of dynamical systems gives rise to interesting challenges for control in terms of stability, robustness and the overall performance of the global interconnected systems as well as the fault tolerance of the individual subsystems. Interconnected systems can be developed either from a standpoint of centrality of control based on the construction and design of a global system that satisfies the above requirements. Alternatively, the interconnected system can be decentralized which means that the stability, performance, etc., requirements are achieved at the local (subsystem) levels. To develop a good “fault-tolerant control” strategy for decentralized systems it is necessary to take account of various faults or uncertainties that may occur throughout all local levels of the system. A powerful way to achieve this is to use robust state and fault estimation methods accounting for the model–reality mismatch that is inevitable when (a) systems are linearized and (b) when faults occur in subsystem components such as actuators, sensors, etc. The chapter develops a strategy for decentralized state and fault estimation based on the Walcott–Żak form of sliding mode observer (SMO) with linear matrix inequality (LMI) formulation. This strategy is shown to be advantageous when considering the estimation problem for a large number of interconnected subsystems. After developing the design procedure a tutorial example of two interconnected linear systems with nonlinear interconnection functions shows that the states as well as actuator and sensor faults can be robustly estimated. Finally, an application-oriented example of a three-machine power system is given which has actuator faults as well as nonlinear machine interconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakule L, Rodellar J (1996) Decentralised control design of uncertain nominally linear symmetric composite systems. IEE Proc Control Theory Appl 143:530–536

    Article  MATH  Google Scholar 

  2. Bakule L, Rossel JM (2008) Overlapping controllers for uncertain delay continuous-time systems. Kybernetika 44(1):17–34

    MathSciNet  MATH  Google Scholar 

  3. Benigni A, D’Antona G, Ghisla U, Monti A, Ponci F (2010) A decentralized observer for ship power system applications: implementation and experimental validation. IEEE Trans Instrum Meas 59(2):440–449

    Article  Google Scholar 

  4. Choi HH, Ro KS (2005) LMI-based sliding-mode observer design method. IEE Proc Control Theory Appl 152(1):113–115

    Article  Google Scholar 

  5. Chung WH, Speyer JL, Chen RH (2001) A decentralized fault detection filter. J Dyn Syst Meas Control 123(2):237–247

    Article  Google Scholar 

  6. Corless M, Tu J (1998) State and input estimation for a class of uncertain systems. Automatica 34(6):757–764

    Article  MathSciNet  MATH  Google Scholar 

  7. Edwards C, Menon PP (2008) State reconstruction in complex networks using sliding mode observers. In: 47th IEEE conference on decision and control, IEEE, Cancun, Mexico, pp 2832–2837

    Google Scholar 

  8. Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. CRC Press, New York

    MATH  Google Scholar 

  9. Edwards C, Spurgeon SK, Patton RJ (2000) Sliding mode observers for fault detection and isolation. Automatica 36(4):541–553

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo Y, Hill DJ, Wang Y (2000) Nonlinear decentralized control of large-scale power systems. Automatica 36(9):1275–1289

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassan MF, Sultan MA, Attia MS (1992) Fault detection in large-scale stochastic dynamic systems. In: IEE proceedings control theory and applications, IET, vol 139, pp 119–124

    Google Scholar 

  12. Huang Z, Patton RJ (2012) An adaptive sliding mode approach to decentralized control of uncertain systems. In: 2012 UKACC international conference on control, IEEE, Cardiff, UK, pp 70–75

    Google Scholar 

  13. Huang Z, Patton RJ (2012) Decentralized control of uncertain systems via adaptive sliding and overlapping decomposition. In: Proceedings of the 7th IFAC symposium on robust control design, IFAC, Aalborg, Denmark, vol 7, pp 784–789

    Google Scholar 

  14. Huang Z, Patton RJ (2015) Output feedback sliding mode ftc for a class of nonlinear inter-connected systems. IFAC-PapersOnLine 48(21):1140–1145

    Article  Google Scholar 

  15. Hui S, Żak SH (2005) Observer design for systems with unknown inputs. Int J Appl Math Comput Sci 15(4):431–446

    MathSciNet  MATH  Google Scholar 

  16. Ikeda M (1989) Decentralized control of large scale systems. Three Decad Math Syst Theory 135:219–242

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalsi K, Lian J, Żak SH (2010) Decentralized dynamic output feedback control of nonlinear interconnected systems. IEEE Trans Autom Control 55(8):1964–1970

    Article  MathSciNet  Google Scholar 

  18. Kalsi K, Lian J et al (2009) Decentralized control of multimachine power systems. In: Proceedings of the American control conference, IEEE, Missouri, United States, pp 2122–2127

    Google Scholar 

  19. Pagilla PR, Zhu Y (2004) A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems. In: Proceedings of the American control conference, IEEE, Boston, United States, vol 4, pp 3711–3716

    Google Scholar 

  20. Patton RJ, Klinkhieo S (2009) Actuator fault estimation and compensation based on an augmented state observer approach. In: Proceedings of the 48th IEEE conference on decision and control, IEEE, pp 8482–8487

    Google Scholar 

  21. Patton RJ, Putra D, Klinkhieo S (2010) Friction compensation as a fault-tolerant control problem. Int J Syst Sci 41(8):987–1001

    Article  MathSciNet  MATH  Google Scholar 

  22. Sandell NR Jr, Varaiya P, Athans M, Safonov MG (1978) Survey of decentralized control methods for large scale systems. IEEE Trans Autom Control 23(2):108–128

    Article  MathSciNet  MATH  Google Scholar 

  23. Shafai B, Ghadami R, Saif M (2011) Robust decentralized PI observer for linear interconnected systems. In: 2011 IEEE international symposium on computer-aided control system design, IEEE, Denver, CO, United States, pp 650–655

    Google Scholar 

  24. Shankar S, Darbha S, Datta A (2002) Design of a decentralized detection of interacting LTI systems. Math Probl Eng 8(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  25. Šiljak DD (1991) Decentralized control of complex systems. Academic Press, Boston

    MATH  Google Scholar 

  26. Šiljak DD (1996) Decentralized control and computations: status and prospects. Annu Rev Control 20:131–141

    Article  Google Scholar 

  27. Šiljak DD, Vukcevic MB (1976) Decentralization, stabilization, and estimation of large-scale linear systems. IEEE Trans Autom Control 21(3):363–366

    Article  MathSciNet  MATH  Google Scholar 

  28. Šiljak DD, Zečević AI (2005) Control of large-scale systems: beyond decentralized feedback. Annu Rev Control 29(2):169–179

    Article  MATH  Google Scholar 

  29. Šiljak DD, Stipanovic DM, Zecevic AI et al (2002) Robust decentralized turbine/governor control using linear matrix inequalities. IEEE Trans Power Syst 17(3):715–722

    Article  Google Scholar 

  30. Tan CP, Edwards C (2001) An LMI approach for designing sliding mode observers. Int J Control 74(16):1559–1568

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan CP, Edwards C (2002) Sliding mode observers for detection and reconstruction of sensor faults. Automatica 38(10):1815–1821

    Article  MathSciNet  MATH  Google Scholar 

  32. Tlili AS, Braiek NB (2009) Decentralized observer based guaranteed cost control for nonlinear interconnected systems. Int J Control Autom 2(2):19–34

    Google Scholar 

  33. Utkin VI (1992) Sliding modes in control and optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Walcott BL, Żak SH (1987) State observation of nonlinear uncertain dynamical systems. IEEE Trans Autom Control 32(2):166–170

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiang J, Su H, Chu J (2005) On the design of Walcott-żak sliding mode observer. In: Proceedings of the American control conference, IEEE, Portland, OR, United States, pp 2451–2456

    Google Scholar 

  36. Yan X, Edwards C (2008) Robust decentralized actuator fault detection and estimation for large-scale systems using a sliding mode observer. Int J control 81(4):591–606

    Article  MathSciNet  MATH  Google Scholar 

  37. Zinober AS (1990) Deterministic control of uncertain systems. IET, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron J. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, Z., Patton, R.J., Lan, J. (2016). Sliding Mode State and Fault Estimation for Decentralized Systems. In: Rauh, A., Senkel, L. (eds) Variable-Structure Approaches. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31539-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31539-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31537-9

  • Online ISBN: 978-3-319-31539-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics