Skip to main content

A Sliding Mode Control with a Bang–Bang Observer for Detection of Particle Pollution

  • Chapter
  • First Online:
Book cover Variable-Structure Approaches

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

This chapter presents a single-input single-output (SISO) adaptive sliding mode control combined with an adaptive bang–bang observer to improve a metal–polymer composite sensor system. The proposed techniques improve the disturbance rejection of a sensor system and thus their reliability in an industrial environment. The industrial application is based on the workplace particulate pollution of welding fumes. Breathing welding fumes is extremely detrimental to human health and exposes the lungs to great hazards, therefore an effective ventilation system is essential. Typically, sliding mode control is applied in actuator control. In this sense, the proposed application is an innovative one. It seeks to improve the performance of sensors in terms of robustness with respect to parametric uncertainties and in terms of insensibility with respect to disturbances. In particular, a sufficient condition to obtain an asymptotic robustness of the estimation of the proposed bang–bang observer is designed and substantiated. The whole control scheme is designed using the well-known Lyapunov approach. A particular sliding surface is defined to obtain the inductive voltage as a controlled output. The adaptation is performed using scalar factors of the input–output data with the assistance of an output error model. A general identification technique is obtained through scaling data. To obtain this data, recursive least squares (RLS) methods are used to estimate the parameters of a linear model using input–output scaling factors. In order to estimate the parametric values in the small-scale range, the input signal requires a high frequency and thus a high sampling rate is needed. Through this proposed technique, a broader sampling rate and input signal with low frequency can be used to identify the small-scale parameters that characterise the linear model. The results indicate that the proposed algorithm is practical and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\mathbf{A}_{0}\) :

Nominal dynamic matrix

\(C_{0}\) :

Nominal capacity of the system

\(\hat{C}_0\) :

Estimated capacity of the system

d(t):

Voltage disturbance

\(\mathbf{e}(t)\) :

Error vector

\(f_{\mathrm {m}}\) :

Maximal available frequency

\(f_{\mathrm {M}}\) :

Maximal value of the bandwidth

\(\mathbf {G}\) :

Observer matrix

h :

Exponential scaling factor

\(\mathbf {H}\) :

Output observer matrix

\({H_{u}}\) :

Scaling factor of the input signal

\({H_{y}}\) :

Scaling factor of the output signal

i(t):

Current of the system

\(\hat{i}(t)\) :

Observed current of the system

\({K_{\mathrm {s}}}\) :

Steady-state factor

\(L_0\) :

Nominal inductance of the system

\(\hat{L}_0\) :

Estimated inductance of the system

\(\mathbf{L}_{\mathrm {s}}(k)\) :

Discrete gain matrix

\(\mathbf{P}_{\mathrm {s}}(k)\) :

Discrete gain matrix

\(R_0\) :

Nominal resistance of the system

\(\hat{R}_0\) :

Estimated resistance of the system

s(t):

Sliding surface

\(t_{\mathrm {s}}\) :

Sampling rate

\(t_{\mathrm {s_m}}\) :

Scaled sampling rate

T :

Calculate factor

\({u}_{\mathrm {s}}(k)\) :

Discrete scaled input voltage of the model

\({u}_C(t)\) :

Capacitive voltage

\(u_{\mathrm {in}}(t)\) :

Input voltage

\(u_L(t)\) :

Inductance voltage

\(\hat{u}_L(t)\) :

Observed inductance voltage

\(\hat{u}_{L_{\mathrm {max}}}\) :

Maximal output voltage of the system

\(u_{\mathrm {out}}(t)\) :

Output voltage of the system

\({x}_{e}(t)\) :

Magnetic flux error

\({\hat{x}}_{2}(t)\) :

Observed current

\({x}_{\mathrm {2d}}(t)\) :

Desired current

\({y}_{\mathrm {s}}(k)\) :

Discrete scaled current of the model

\(\lambda _{\mathrm {f}}\) :

Forgetting factor

\({\theta }_{\mathrm {s}}(k)\) :

Discrete parameter vector of scaled system

\({\theta }_{u_{\mathrm {s}}}(k)\) :

Discrete parameter vector of scaled input signal

\({\theta }_{y_{\mathrm {s}}}(k)\) :

Discrete parameter vector of scaled output signal

References

  1. Corradini ML, Jetto L, Parlangeli G (2004) Robust stabilization of multivariable uncertain plants via switching control. IEEE Trans Autom Control 49(1):107–114

    Article  MathSciNet  Google Scholar 

  2. Jian-Xin X, Abidi K (2008) Discrete-time output integral sliding-mode control for a piezomotor-driven linear motion stage. IEEE Trans Ind Electron 55(11):3917–3926

    Article  Google Scholar 

  3. Xinkai C, Hisayama T (2008) Adaptive sliding-mode position control for piezo-actuated stage. IEEE Trans Ind Electron 55(11):3927–3934

    Article  Google Scholar 

  4. Pan Y, Ozgiiner O, Dagci OH (2008) Variable-structure control of electronic throttle valve. IEEE Trans Ind Electron 55(11):3899–3907

    Article  Google Scholar 

  5. She JH, Xin X, Pan Y (2011) Equivalent-input-disturbance approach: analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE/ASME Trans Mechatron 16(2):330340

    Article  Google Scholar 

  6. Lee J-D, Duan R-Y (2011) Cascade modeling and intelligent control design for an electromagnetic guiding system. IEEE/ASME Trans Mechatron 16(3):470–479

    Article  MathSciNet  Google Scholar 

  7. Yang Y-P, Liu J-J, Ye D-H, Chen Y-R, Lu P-H (2013) Multiobjective optimal design and soft landing control of an electromagnetic valve actuator for a camless engine. IEEE/ASME Trans Mechatron 18(3):963–972

    Article  Google Scholar 

  8. Levant A (2010) Chattering analysis. IEEE Trans Autom Control 55(6):1380–1389

    Article  MathSciNet  Google Scholar 

  9. Mercorelli P (2012) A two-stage augmented extended Kalman filter as an observer for sensorless valve control in camless internal combustion engines. IEEE Trans Ind Electron 59(11):4236–4247

    Article  Google Scholar 

  10. Mercorelli P (2014) An adaptive and optimized switching observer for sensorless control of an electromagnetic valve actuator in camless internal combustion engines. Asian J Control (Wiley) 4(16):959–973

    Article  MathSciNet  MATH  Google Scholar 

  11. Rauh A, Aschemann H (2012) Interval-based sliding mode control and state estimation for uncertain systems. In: IEEE-17th international conference on methods and models in automation and robotics (MMAR), Miedzyzdrojie, pp 595–600

    Google Scholar 

  12. Senkel L, Rauh A, Aschemann H (2013) Optimal input design for online state and parameter estimation using interval sliding mode observers. In: IEEE-52nd annual conference on decision and control (CDC), Firenze, pp 502–507

    Google Scholar 

  13. Zhang J, Swain AK, Nguang SK (2012) Detection and isolation of incipient sensor faults for a class of uncertain non-linear systems. IET Control Theory Appl 6(12):1870–1880

    Article  MathSciNet  Google Scholar 

  14. Zhang J, Swain AK, Nguang SK (2014) Simultaneous robust actuator and sensor fault estimation for uncertain non-linear Lipschitz systems. IET Control Theory Appl 8(14):1364–1374

    Article  MathSciNet  Google Scholar 

  15. de Loza AF, Cieslak J, Henry D, Dávila J (2015) Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. IET Control Theory Appl 9(4):598–607

    Article  MathSciNet  Google Scholar 

  16. Schimmack M, Mercorelli P (2014) Contemporary sinusoidal disturbance detection and nano parameters identification using data scaling based on recursive least squares algorithms. In: IEEE CoDIT—international conference on control, decision and information technologies, France, pp 1528–1531

    Google Scholar 

  17. Gu D.-W, Petkov P, Konstantinov MM (2013) Modelling of uncertain systems. In: Robust control design with MATLAB\(\textregistered \). Springer-Verlag, London. ISBN 978-1-84628-091-7

    Google Scholar 

  18. Ljung L (1999) System identification: theory for the user. Prentice-Hall, Upper Saddle River

    Book  MATH  Google Scholar 

  19. Ljung L, Söderström T (1983) Theory and practice of recursive identification. MIT Press, Cambridge

    MATH  Google Scholar 

  20. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Schimmack or Paolo Mercorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schimmack, M., Mercorelli, P. (2016). A Sliding Mode Control with a Bang–Bang Observer for Detection of Particle Pollution. In: Rauh, A., Senkel, L. (eds) Variable-Structure Approaches. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31539-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31539-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31537-9

  • Online ISBN: 978-3-319-31539-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics