Air-Mass and Frontal Extreme Precipitation Occurrence in Synoptic Situations

  • Ewa Łupikasza
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


The frequency of origin-based types of extreme precipitation in Europe displays a regionally varied relationship with the direction of the advection and the type of the pressure system. This chapter discusses relationships between origin-based types of precipitation and mesoscale circulation. For the purpose of this chapter, circulation types were identified for each grid point between 30°N and 80°N and 30°W and 70°E at the interval of 2.5° of latitude and longitude. The direction of air advection was identified with the geostrophic wind direction. The type of the pressure system was identified using the vorticity formula. The study also identified the conditional probability of the occurrence of each origin-based type of extreme precipitation in each of these circulation types.

All origin-based types of extreme precipitation occur in both cyclonic and anticyclonic situations, but the occurrence frequency of the former is higher. Dependencies between the occurrence of frontal precipitation and atmospheric circulation are characterised by a greater degree of regional variability than these between air-mass precipitation and atmospheric circulation. Extreme air-mass precipitation has the strongest association with the circulation in Southern Europe, in mountainous areas, on the southeastern North Sea coast, and on the western slopes of the Scandinavian Mountains. Extreme precipitation of the frontal type tends to be linked with both the direction of air advection and the type of the pressure system. In cyclones these relationships display strong seasonality, whereas in anticyclones they remain stable throughout the year. The breakdown of frontal precipitation into the types of associated fronts helps better define the relationship between its occurrence and atmospheric circulation, especially in cyclonic synoptic situations.


Circulation types Precipitation probability Cyclone Anticyclone Synoptic situation 


  1. Barry RG, Perry AH (1973) Synoptic climatology. Methods and applications. Methuen, LondonGoogle Scholar
  2. Djurić D (1994) Weather analysis. Prentice Hall, Englewood CliffsGoogle Scholar
  3. Goldreich Y (2003) The climate of Israel: observation, research and application. Springer, IsraelCrossRefGoogle Scholar
  4. Goldreich Y, Moses H, Rosenfeld D (2004) Radar analysis of cloud systems and their rainfall yield in Israel. Isr J Earth Sci 53:63–76CrossRefGoogle Scholar
  5. Hare FK (1964) Dynamiczne aspekty klimatologii (Dynamic sides of Cimatology, in Polish). Przegląd Zagranicznej Literatury Geograficznej, PAN IG, Warszawa 2:826–840Google Scholar
  6. Harmann JR, Winkler JA (1991) Synoptic climatology: themes, applications and prospects. Phys Geogr 12(3):220–230Google Scholar
  7. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  8. Kundzewicz Z, Dobrowolski A, Lorenc H, Niedźwiedź T, Pińskwar I, Kowalczak P (2012) Floods in Poland. In: Kundzewicz Z (ed) Changes in flood risk in Europe. IAHS Press, WallingfordCrossRefGoogle Scholar
  9. Lorenzo MN, Taboadab JJ, Gimenoa L (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int J Climatol 28:1493–1505CrossRefGoogle Scholar
  10. Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Climate 18:2682–2705CrossRefGoogle Scholar
  11. Niedźwiedź T (1981) Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w Dorzeczu Górnej Wisły (Synoptic situations and their influence on spatial variability selected climate element in the upper Vistula basine). Uniwersytet Jagielloński, Rozprawy habilitacyjne 58, KrakówGoogle Scholar
  12. Niedźwiedź T (2003a) Extreme precipitation in Central Europe and its synoptic background. Global Change 10:15–29Google Scholar
  13. Niedźwiedź T (2003b) Extreme precipitation events on the northern side of the Tatra mountains. Geogr Pol 76(2):15–23Google Scholar
  14. Pastor F, Estrela MJ, Peñarrocha D, Millán MM (2001) Torrential rains on the Spanish Mediterranean coast: modeling the effects of the sea surface temperature. J Appl Meteorol 40:1180–1195CrossRefGoogle Scholar
  15. Piotrowski P (2009) Obiektywna metoda klasyfikacji cyrkulacji atmosferycznej dla Polski (The objective classification of atmospheric circulation for Poland), Folia Geographica Physica 10. Wydawnictwo Uniwersytetu Łódzkiego, ŁódźGoogle Scholar
  16. Saaroni H, Halfon N, Ziv B, Alpertd P, Kutielb H (2010) Links between the rainfall regime in Israel and location and intensity of Cyprus lows. Int J Climatol 30:1014–1025Google Scholar
  17. Schneider SH (1996) Encyclopedia of climate and weather, vols 1 & 2. Oxford University Press, New York, p 875Google Scholar
  18. Strangeways I (2007) Precipitation. Theory, measurements and distribution. Cambridge University Press, New York, p 290Google Scholar
  19. Sumner G (1996) Daily precipitation patterns over Wales: towards a detailed precipitation climatology. Trans Inst Br Geogr NS 21:157–176CrossRefGoogle Scholar
  20. Tolika K, Anagnostopoulou CHR, Maheras P, Kutiel H (2007) Extreme precipitation related to circulation types for four case studies over the Eastern Mediterranean. Adv Geosci 12:87–93CrossRefGoogle Scholar
  21. Ustrnul Z (1997) Zmienność cyrkulacji atmosfery na półkuli północnej w XX wieku (Variability of atmospheric circulation over northern hemisphere in the 20th century), Materiały Badawcze, Seria Meteorologia 27. IMGW, WarszawaGoogle Scholar
  22. Wilby RL (1998) Modelling low-frequency rainfall events using airflow indices, weather patterns and frontal frequencies. J Hydrol 212-213:380–392CrossRefGoogle Scholar
  23. Wilks DS (2006) Statistical methods in the atmospheric sciences, International Geophysics Series. Elsevier, San DiegoGoogle Scholar
  24. Yarnal B (2000) Synoptic climatology in environmental analysis. A primer. Belhaven Press, LondonGoogle Scholar
  25. Zangvil A, Karas S, Sasson A (2003) Connection between eastern Mediterranean seasonal mean 500 hPa height and sea-level pressure patterns and the spatial rainfall distribution over Israel. Int J Climatol 23:1567–1576CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ewa Łupikasza
    • 1
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland

Personalised recommendations