Skip to main content

A Distributed Hybrid Algorithm for the Graph Coloring Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9554))

Abstract

We propose a multi-agent based Distributed Hybrid algorithm for the Graph Coloring Problem (DH-GCP). DH-GCP applies a tabu search procedure with two different neighborhood structures for its intensification. To diversify the search into unexplored promising regions, two crossover operators and two types of perturbation moves are performed. All these search components are managed by a multi-agent model which uses reinforcement learning for decision making. The performance of the proposed algorithm is evaluated on well-known DIMACS benchmark instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151(2), 379–388 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blochliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive Tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chalupa, D.: Population-based and learning-based metaheuristic algorithms for the graph coloring problem. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 465–472. ACM (2011)

    Google Scholar 

  5. Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125, Ithaca, New York, USA (2002)

    Google Scholar 

  6. Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-coloring and set T-colorings. In: Osman, I.H., et al. (eds.) Metaheuristics 1998: Theory and Applications, Chap. 3. Kluver Academic Publishers, Boston (1998)

    Google Scholar 

  7. Dorne, R., Hao, J.-K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 745–754. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, And Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Boston (1996)

    MATH  Google Scholar 

  9. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–461 (1996)

    Article  MATH  Google Scholar 

  10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the K-colouring problem. Discrete Appl. Math. 156(2), 267–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galinier, P., Hamiez, J.-P., Hao, J.-K., Porumbel, D.: Recent advances in graph vertex coloring. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 505–528. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Guo, Y., Goncalves, Y., Hsu, T.: A multi-agent based self-adaptive genetic algorithm for the long-term car pooling problem. J. Math. Model. Algorithms Oper. Res. 12(1), 45–66 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Hao, J.K., Wu, Q.: Improving the extraction and expansion method for large graph coloring. Discrete Appl. Math. 160(16–17), 2397–2407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hertz, A., de Werra, D.: Using Tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math. 156(13), 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; Part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  18. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moalic, L., Gondran, A.: The new memetic algorithm HEAD for graph coloring: an easy way for managing diversity. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 173–183. Springer, Heidelberg (2015)

    Google Scholar 

  22. Porumbel, D., Hao, J.K., Kuntz, P.: A search space “cartography” for guiding graph coloring heuristics. Comput. Oper. Res. 37(4), 769–778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Porumbel, D., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Comput. Oper. Res. 37(10), 1822–1832 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prestwich, S.: Coloration neighbourhood search with forward checking. Ann. Math. Artif. Intell. 34(4), 327–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sghir, I., Hao, J.K., Ben Jaafar, I., Ghédira, K.: A multi-agent based optimization method applied to the quadratic assignment problem. Expert Syst. Appl. 42(23), 9252–9263 (2015)

    Article  Google Scholar 

  26. Titiloye, O., Crispin, A.: Graph coloring with a distributed hybrid quantum annealing algorithm. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 553–562. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph coloring. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 346–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Wu, Q., Hao, J.K.: Coloring large graphs based on independent set extraction. Comput. Oper. Res. 39, 283–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for valuable suggestions and comments which helped us improve the paper. The work is partially supported by the PGMO project (2013-2015, Jacques Hadamard Mathematical Foundation, Paris).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Kao Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sghir, I., Hao, JK., Ben Jaafar, I., Ghédira, K. (2016). A Distributed Hybrid Algorithm for the Graph Coloring Problem. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science(), vol 9554. Springer, Cham. https://doi.org/10.1007/978-3-319-31471-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31471-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31470-9

  • Online ISBN: 978-3-319-31471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics