Skip to main content

Asymptotic Methods for Weakly Nonlinear and Other Water Waves

  • Chapter
  • First Online:
Nonlinear Water Waves

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2158))

Abstract

The model and equations that describe the classical (inviscid) water-wave problem are introduced and some standard applications listed. The particular interests here are outlined, based on the relevant non-dimensionalisation and scalings; the resulting form of the equations is then interpreted in terms of the various parameters. The main development in this contribution makes use of the ideas and techniques of asymptotic (parameter) expansions, methods which are briefly described. This approach is then used to develop some important, approximate equations that are generated by the water-wave problem, many of which are of completely integrable type i.e. they are ‘soliton’ equations, for which an inverse scattering transform (IST) exists; these important ideas are briefly described. The corresponding problems of modulated waves are also mentioned. Further, the various models and approximations introduced here can be improved in order to represent, more accurately, physically realistic flows (but always in the absence of viscosity). To this end we provide, as an example, the problem of variable depth for weakly nonlinear, dispersive waves. A class of problems, of considerable practical and current mathematical interest, involves the inclusion of vorticity (i.e. the prescription of some background flow on which a wave propagates). In particular, we will present the corresponding problems associated with some of the classical examples introduced earlier, such as the Korteweg-de Vries and Camassa-Holm equations. We conclude this type of problem by discussing the propagation of ring waves on a flow with some prescribe flow (i.e. non-zero vorticity) in a given direction. We finish with an introduction to the way in which we can use asymptotic expansions to extract some details of solutions that exist only in a formal sense. As examples of this, we look at two rather special wave-propagation problems: periodic waves with vorticity and a novel approach to the problem of edge waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Notes, vol. 149. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  3. Anker, D., Freeman, N.C.: On the soliton solutions of the Davey-Stewartson equations for long waves. Proc. R. Soc. Lond. A 360, 529–540 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnett, T.P., Kenyon, K.E.: Recent advances in the study of wind waves. Rep. Prog. Phys. 38, 667–729 (1975)

    Article  Google Scholar 

  5. Benjamin, T.B.: The solitary wave on a stream with an arbitrary distribution of vorticity. J. Fluid Mech. 12, 97–116 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benney, D.J., Bergeron, R.F.: A new class of nonlinear waves in parallel flows. Stud. Appl. Math. 48, 181–204 (1969)

    Article  MATH  Google Scholar 

  7. Boussinesq, J.: Théorie de l’intumescence liquid appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Acad. Sci. (Paris) 72, 755–759 (1871)

    Google Scholar 

  8. Burns, J.C.: Long waves on running water. Proc. Camb. Philos. Soc. 49, 695–706 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Camassa, R., Holm, D.D., Hyman, J.: An integrable shallow water equation with peaked solitons. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  MATH  Google Scholar 

  11. Constantin, A.: Edge waves along a sloping beach. J. Phys. A Math. Gen. 34, 9723–9731 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Escher, J.: Analyticity of periodic travelling free surface waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Johnson, R.S.: On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations of water waves. J. Nonlinear Math. Phys. 15 (2), 58–73 (2008)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Johnson, R.S.: Propagation of very long waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Rat. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Strauss, W.: Rotational steady water waves near stagnation. Philos. Trans. R. Soc. Lond. A 365, 2227–2239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Copson, E.T.: Asymptotic Expansions. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  20. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York (1967)

    MATH  Google Scholar 

  21. Crapper, G.D.: Introduction to Water Waves. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  22. da Silva, A.F.T., Peregrine, D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  MathSciNet  Google Scholar 

  23. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dean, R.G., Dalrymple, R.A.: Water Wave Mechanics for Engineers and Scientists. World Scientific, Singapore (1984)

    Google Scholar 

  25. Debnath, L.: Nonlinear Water Waves. Academic, London (1994)

    MATH  Google Scholar 

  26. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)

    Google Scholar 

  27. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)

    MathSciNet  Google Scholar 

  28. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  29. Dubreil-Jacotin, M.-L.: Sur le détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pure Appl. 13, 217–291 (1934)

    MATH  Google Scholar 

  30. Ehrnström, M., Villari, G.: Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 1888–1909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fermi, E, Pasta, J., Ulam, S.M.: Studies in nonlinear problems. Technical Report, LA-1940, Los Alamos Science Laboratory, New Mexico (1955) (Also in Newell, A.C. (ed.) (1979), Nonlinear wave motion, American Mathematical Society, Providence, RI 2008)

    Google Scholar 

  32. Ford, W.B.: Divergent Series, Summability and Asymptotics. Chelsea, New York (1960)

    Google Scholar 

  33. Freeman, N.C., Davey, A.: On the evolution of packets of long waves. Proc. R. Soc. Lond. A 344, 427–433 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freeman, N.C., Johnson, R.S.: Shallow water waves on shear flows. J. Fluid Mech. 42, 401–409 (1970)

    Article  MATH  Google Scholar 

  35. Garabedian, P.R.: Partial Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  36. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  37. Hardy, G.H.: Divergent Series. Clarendon, Oxford (1949)

    MATH  Google Scholar 

  38. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)

    Article  Google Scholar 

  39. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I KdV-type bilinear equations. J. Math. Phys. 28, 1732–1742 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  41. Holmes, M.H.: Introduction to Perturbation Methods. Springer, New York (1955)

    Google Scholar 

  42. Johnson, R.S.: On the modulation of water waves on shear flows. Proc. R. Soc. Lond. A 347, 537–546 (1976)

    Article  MATH  Google Scholar 

  43. Johnson, R.S.: On the nonlinear critical layer below a nonlinear unsteady surface wave. J. Fluid Mech. 167, 327–351 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Johnson, R.S.: Ring waves on the surface of shear flows: a linear and nonlinear theory. J. Fluid Mech. 215, 145–160 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Johnson, R.S.: On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow, with or without a critical layer). Geophys. Astrophys. Fluid Dyn. 57, 115–133 (1991)

    Article  MathSciNet  Google Scholar 

  46. Johnson, R.S.: Solitary wave, soliton and shelf evolution over variable depth. J. Fluid Mech. 276, 125–138 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Johnson, R.S.: A two-dimensional Boussinesq equation for water waves and some of its solutions. J. Fluid Mech. 323, 65–78 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  49. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 457, 63–82 (2002)

    MathSciNet  MATH  Google Scholar 

  50. Johnson, R.S.: On solutions of the Camassa-Holm equation, Proc. R. Soc. Lond. A459, 1687–1708 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Johnson, R.S.: The Camassa-Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–1111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Johnson, R.S.: The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. J. Nonlinear Math. Phys. 10, 72–92 (2003)

    Article  MathSciNet  Google Scholar 

  53. Johnson, R.S.: Singular Perturbation Theory. Springer, New York (2004)

    Google Scholar 

  54. Johnson, R.S.: Some contributions to the theory of edge waves. J. Fluid Mech. 524, 81–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Johnson, R.S.: Edge waves: theories past and present. Philos. Trans. R. Soc. Lond. A365, 2359–2376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Johnson, R.S.: Water waves near a shoreline in a flow with vorticity: two classical examples. J. Nonlinear Math. Phys. 15, 133–156 (2008)

    Article  MathSciNet  Google Scholar 

  57. Johnson, R.S.: Periodic waves over constant vorticity: some asymptotic results generated by parameter expansions. Wave Motion 46, 339–349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Johnson, R.S.: A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Commun. Pure Appl. Math. 11, 1497–1522 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Kadomtsev, B.P., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  60. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  61. Knickerbocker, C.J., Newell, A.C.: Shelves and the Korteweg-de Vries equation. J. Fluid Mech. 98, 803–818 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  62. Knickerbocker, C.J., Newell, A.C.: Reflections from solitary waves in channels of decreasing depth. J. Fluid Mech. 153, 1–16 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ko, J., Strauss, W.: Large-amplitude steady rotational water waves. Eur. J. Mech. B Fluids 27, 96–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ko, J., Strauss, W.: Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  66. Lighthill, M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  67. Longuet-Higgins, M.S.: On mass, momentum, energy and circulation of a solitary wave. Proc. R. Soc. A 337, 1–13 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  68. Longuet-Higgins, M.S.: Integral properties of periodic gravity waves of finite amplitude. Proc. R. Soc. A 342, 157–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  69. Longuet-Higgins, M.S., Cokelet, E.D.: The deformation of steep surface waves on water I. A numerical method of computation. Proc. R. Soc. 350, 1–26 (1976)

    MathSciNet  MATH  Google Scholar 

  70. Longuet-Higgins, M.S., Fenton, J.: Mass, momentum, energy and circulation of a solitary wave II. Proc. R. Soc. 340, 471–493 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  71. McCowan, J.: On the solitary wave. Philos. Mag. 5, 45–58 (1891)

    Article  MATH  Google Scholar 

  72. Mei, C.C.: The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  73. Miles, J.W.: Obliquely interacting solitary waves. J. Fluid Mech. 79, 157–169 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  74. Miles, J.W.: On the Korteweg-de Vries equation for a gradually varying channel. J. Fluid Mech. 91, 181–190 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  75. Russell, J.S.: Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science, New York, pp. 311–390. John Murray, London (1844)

    Google Scholar 

  76. Smith, D.R.: Singular-Perturbation Theory: An Introduction with Applications. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  77. Starr, V.T.: Momentum and energy integrals for gravity waves of finite height. J. Mar. Res. 6, 175–193 (1947)

    MathSciNet  Google Scholar 

  78. Stoker, J.J.: Water Waves. Interscience, New York (1957)

    MATH  Google Scholar 

  79. Stokes, G.G.: Report on recent researches in hydrodynamics. Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 1–20 (1846) [Also Maths. Phys. Papers I, pp. 157–187. Cambridge University Press, Cambridge (1880)]

    Google Scholar 

  80. Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Phys. Papers I 1, 225–228 (1880)

    Google Scholar 

  81. van Dyke, M.D.: Perturbation Methods in Fluid Mechanics. Academic, New York (1964) (Also, with annotations, The Parabolic Press, 1975)

    MATH  Google Scholar 

  82. Varvaruca, E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246, 4043–4076 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Varvaruca, E., Weiss, G.S.: A geometric approach to generalized Stokes conjectures. Acta Math. 206, 363–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wahlén, E.: Steady water waves with a critical layer. J. Differ. Equ. 246, 2468–2483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zabusky, N.J., Kruskal, M.D.: Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  86. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional selffocussing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  87. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Stanley Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, R.S. (2016). Asymptotic Methods for Weakly Nonlinear and Other Water Waves. In: Constantin, A. (eds) Nonlinear Water Waves. Lecture Notes in Mathematics(), vol 2158. Springer, Cham. https://doi.org/10.1007/978-3-319-31462-4_3

Download citation

Publish with us

Policies and ethics