Skip to main content

Luminescence of 2D TMDC

  • Chapter
  • First Online:
  • 7656 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 239))

Abstract

The direct-indirect gap transition accompanying thickness change has a strong effect on luminescence. The present chapter covers various aspects of luminescence such as strain and electrical gating effects but excludes spin-valley coupling (which is the subject of a dedicated chapter). Of special interest is the observation of single photon emission from monolayers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Conflicting results for \(\mathrm {MoTe_{2}}\) were obtained in [4], where low-temperature measurements were performed and it was found that the PL yield was identical for mono and bilayer samples, decreased slightly for trilayer, and was significantly lower in the tetralayer, from which it was concluded that both mono and bilayer \(\mathrm {MoTe_{2}}\) are direct band gap semiconductors with tetralayer \(\mathrm {MoTe_{2}}\) being an indirect gap semiconductor and with trilayers having nearly identical direct and indirect gaps. This discrepancy was interpreted in terms of a small differences in the size of the indirect and direct gaps in layers of different thickness, comparable to kT at room temperature, which can account for different results at different temperatures.

  2. 2.

    A trion is a charged quasiparticle consisting of one electron and two holes (or two electrons and one hole) bound together. see Chap. 9 for a more detailed description.

  3. 3.

    The \(\varLambda \)-point was not shown in the original work and was added to Fig. 8.6b by the present authors.

References

  1. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS\(_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  Google Scholar 

  2. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS\(_2\). Nano Lett. 10(4), 1271 (2010)

    Article  Google Scholar 

  3. C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single-and few-layer MoTe\(_2\) crystals. Nano Lett. 14(11), 6231 (2014)

    Article  Google Scholar 

  4. I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A.F. Morpurgo, Indirect-to-direct band gap crossover in few-layer MoTe\(_2\). Nano Lett. 15(4), 2336 (2015)

    Article  Google Scholar 

  5. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS\(_2\) and WSe\(_2\). ACS Nano 7(1), 791 (2012)

    Article  Google Scholar 

  6. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS\(_2\) monolayers. Nano Lett. 13(8), 3447 (2012)

    Article  Google Scholar 

  7. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS\(_2\). Nano Lett. 11(12), 5111 (2011)

    Article  Google Scholar 

  8. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe\(_2\) versus MoS\(_2\). Nano Lett. 12(11), 5576 (2012)

    Article  Google Scholar 

  9. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan et al., Monolayer behaviour in bulk ReS\(_2\) due to electronic and vibrational decoupling. Nat. Commun. 5 (2014). doi:10.1038/ncomms4252

  10. S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS\(_2\) using photoluminescence spectroscopy. Nano Lett. 14(10), 5500 (2014)

    Article  Google Scholar 

  11. T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.R. Shen, W.T. Liu, S. Wu, Valley and band structure engineering of folded MoS\(_2\) bilayers. Nat. Nanotech. 9(10), 825 (2014)

    Article  Google Scholar 

  12. A.M. van der Zande, J. Kunstmann, A. Chernikov, D.A. Chenet, Y. You, X. Zhang, P.Y. Huang, T.C. Berkelbach, L. Wang, F. Zhang et al., Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14(7), 3869 (2014)

    Article  Google Scholar 

  13. K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5 (2014). doi:10.1038/ncomms5966

  14. J. Yan, J. Xia, X. Wang, L. Liu, J.L. Kuo, B.K. Tay, S. Chen, W. Zhou, Z. Liu, Z. Shen, Stacking-dependent interlayer coupling in trilayer MoS\(_2\) with broken inversion symmetry. Nano Lett. 15(12), 8155 (2015). doi:10.1021/acs.nanolett.5b03597

    Article  Google Scholar 

  15. C. Yuan, Y. Cao, X. Luo, T. Yu, Z. Huang, B. Xu, Y. Yang, Q. Li, G. Gu, W. Lei, Monolayer-by-monolayer stacked pyramid-like MoS\(_2\) nanodots on monolayered MoS\(_2\) flakes with enhanced photoluminescence. Nanoscale 7(41), 17468 (2015)

    Article  Google Scholar 

  16. D. Kozawa, R. Kumar, A. Carvalho, K.K. Amara, W. Zhao, S. Wang, M. Toh, R.M. Ribeiro, A.C. Neto, K. Matsuda et al., Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5 (2014). doi:10.1038/ncomms5543

  17. A. Carvalho, R. Ribeiro, A.C. Neto, Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88(11), 115205 (2013)

    Article  Google Scholar 

  18. H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, Exciton dynamics in suspended monolayer and few-layer MoS\(_2\) 2D crystals. ACS Nano 7(2), 1072 (2013)

    Article  Google Scholar 

  19. S. Sim, J. Park, J.G. Song, C. In, Y.S. Lee, H. Kim, H. Choi, Exciton dynamics in atomically thin MoS\(_2\): Interexcitonic interaction and broadening kinetics. Phys. Rev. B 88(7), 075434 (2013)

    Article  Google Scholar 

  20. R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H.Y. Chiu, H. Zhao, Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86(4), 045406 (2012)

    Article  Google Scholar 

  21. N. Kumar, J. He, D. He, Y. Wang, H. Zhao, Charge carrier dynamics in bulk MoS\(_2\) crystal studied by transient absorption microscopy. J. Appl. Phys. 113(13), 133702 (2013)

    Article  Google Scholar 

  22. P.K. Chow, R.B. Jacobs-Gedrim, J. Gao, T.M. Lu, B. Yu, H. Terrones, N. Koratkar, Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 9(2), 1520 (2015)

    Article  Google Scholar 

  23. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3 (2013). doi:10.1038/srep02657

  24. N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E.K. Yeow, T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer WS\(_2\) triangles. ACS Nano 7(12), 10985 (2013)

    Article  Google Scholar 

  25. T. Kato, T. Kaneko, Optical detection of a highly localized impurity state in monolayer tungsten disulfide. ACS Nano 8(12), 12777 (2014)

    Article  Google Scholar 

  26. L. Yuan, L. Huang, Exciton dynamics and annihilation in WS\(_2\) 2D semiconductors. Nanoscale 7(16), 7402 (2015)

    Article  Google Scholar 

  27. H. Wang, C. Zhang, F. Rana, Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS\(_2\). Nano Lett. 15(1), 339 (2015)

    Article  Google Scholar 

  28. M. Amani, D.H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R.M. Wallace, S.C. Lee, J.H. He, J.W. Ager, X. Zhang, E. Yablonovitch, A. Javey, Near-unity photoluminescence quantum yield in MoS\(_2\). Science 350(6264), 1065 (2015)

    Google Scholar 

  29. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.Y. Veuillen, J. Marcus, P. Kossacki, M. Potemski, Single photon emitters in exfoliated WSe\(_2\) structures. Nat. Nanotech. 10, 503 (2015)

    Article  Google Scholar 

  30. Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen, Y.J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497 (2015)

    Article  Google Scholar 

  31. A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis, A. Imamoğlu, Optically active quantum dots in monolayer WSe\(_2\). Nat. Nanotech. 10, 491 (2015)

    Article  Google Scholar 

  32. C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507 (2015)

    Article  Google Scholar 

  33. A.P. Nayak, T. Pandey, D. Voiry, J. Liu, S.T. Moran, A. Sharma, C. Tan, C.H. Chen, L.J. Lee, M. Chhowalla et al., Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 15(1), 346 (2015)

    Article  Google Scholar 

  34. S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, A. Javey, Strain-induced indirect to direct bandgap transition in multilayer WSe\(_2\). Nano Lett. 14(8), 4592 (2014)

    Article  Google Scholar 

  35. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS\(_2\). Nano Lett. 13(8), 3626 (2013)

    Article  Google Scholar 

  36. T. Li, Ideal strength and phonon instability in single-layer MoS\(_2\). Phys. Rev. B 85(23), 235407 (2012)

    Article  Google Scholar 

  37. E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS\(_2\). Nano Res. 5(1), 43 (2012)

    Article  Google Scholar 

  38. K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS\(_2\). Nano Lett. 13(6), 2931 (2013)

    Article  Google Scholar 

  39. S. Ahmad, S. Mukherjee et al., A comparative study of electronic properties of bulk MoS\(_2\) and its monolayer using DFT technique: Application of mechanical strain on MoS\(_2\) monolayer. Graphene 3(4), 52 (2014)

    Article  Google Scholar 

  40. L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng, B. Xiang, Lattice strain effects on the optical properties of MoS\(_2\) nanosheets. Sci. Rep. 4 (2014). doi:10.1038/srep05649

  41. H. Peelaers, C.G. Van de Walle, Effects of strain on band structure and effective masses in MoS\(_2\). Phys. Rev. B 86(24), 241401 (2012)

    Article  Google Scholar 

  42. Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao, Y.T. Hsu, L.J. Li, W. Guo, S.P. Lau, Exceptional tunability of band energy in a compressively strained trilayer MoS\(_2\) sheet. ACS Nano 7(8), 7126 (2013)

    Article  Google Scholar 

  43. A. Newaz, D. Prasai, J. Ziegler, D. Caudel, S. Robinson, R. Haglund Jr., K. Bolotin, Electrical control of optical properties of monolayer MoS\(_2\). Solid State Commun. 155, 49 (2013)

    Article  Google Scholar 

  44. S. Schmitt-Rink, D. Chemla, D. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32(10), 6601 (1985)

    Article  Google Scholar 

  45. Z. He, Y. Sheng, Y. Rong, G.D. Lee, J. Li, J.H. Warner, Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. ACS Nano 9(3), 2740 (2015)

    Article  Google Scholar 

  46. S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS\(_2\) via chemical doping. Nano Lett. 13(12), 5944 (2013)

    Article  Google Scholar 

  47. Y. Li, Z. Qi, M. Liu, Y. Wang, X. Cheng, G. Zhang, L. Sheng, Photoluminescence of monolayer MoS\(_2\) on LaAlO\(_3\) and SrTiO\(_3\) substrates. Nanoscale 6(24), 15248 (2014)

    Article  Google Scholar 

  48. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Tightly bound trions in monolayer MoS\(_2\). Nat. Mater. 12(3), 207 (2013)

    Article  Google Scholar 

  49. N. Scheuschner, O. Ochedowski, A.M. Kaulitz, R. Gillen, M. Schleberger, J. Maultzsch, Photoluminescence of freestanding single-and few-layer MoS\(_2\). Phys. Rev. B 89(12), 125406 (2014)

    Article  Google Scholar 

  50. U. Bhanu, M.R. Islam, L. Tetard, S.I. Khondaker, Photoluminescence quenching in gold-MoS\(_2\) hybrid nanoflakes. Sci. Rep. 4, 5575 (2014). doi:10.1038/srep05575

    Article  Google Scholar 

  51. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang et al., Strong photoluminescence enhancement of MoS\(_2\) through defect engineering and oxygen bonding. ACS Nano 8(6), 5738 (2014)

    Article  Google Scholar 

  52. N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, T. Yu, Chemically driven tunable light emission of charged and neutral excitons in monolayer WS\(_2\). ACS Nano 8(11), 11320 (2014)

    Article  Google Scholar 

  53. J.O. Varghese, P. Agbo, A.M. Sutherland, V.W. Brar, G.R. Rossman, H.B. Gray, J.R. Heath, The influence of water on the optical properties of single-layer molybdenum disulfide. Adv. Mater. 27, 2734 (2015)

    Article  Google Scholar 

  54. R. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. Ferrari, P. Avouris, M. Steiner, Electroluminescence in single layer MoS\(_2\). Nano Lett. 13(4), 1416 (2013)

    Article  Google Scholar 

  55. Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, X. Zhang, Exciton-dominant electroluminescence from a diode of monolayer MoS\(_2\). Appl. Phys. Lett. 104(19), 193508 (2014)

    Article  Google Scholar 

  56. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe\(_2\) p-n junctions. Nat. Nanotech. 9(4), 268 (2014)

    Article  Google Scholar 

  57. S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, A.F. Morpurgo, Mono-and bilayer WS\(_2\) light-emitting transistors. Nano Lett. 14(4), 2019 (2014)

    Article  Google Scholar 

  58. A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotech. 9(4), 257 (2014)

    Article  Google Scholar 

  59. B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotech. 9(4), 262 (2014)

    Article  Google Scholar 

  60. Y. Zhang, T. Oka, R. Suzuki, J. Ye, Y. Iwasa, Electrically switchable chiral light-emitting transistor. Science 344(6185), 725 (2014)

    Article  Google Scholar 

  61. D. Li, R. Cheng, H. Zhou, C. Wang, A. Yin, Y. Chen, N.O. Weiss, Y. Huang, X. Duan, Electric field induced strong enhancement of electroluminescence in multi-layer MoS\(_2\). Nat. Commun. 6 (2015). doi:10.1038/ncomms8509

  62. M. Zhang, J. Wu, Y. Zhu, D.O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin et al., Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport. ACS Nano 8(7), 7130 (2014)

    Article  Google Scholar 

  63. J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen et al., 2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS\(_{2(1-x)}\)Se\(_{2x}\) monolayers. Adv. Mater. 26(9), 1399 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kolobov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolobov, A.V., Tominaga, J. (2016). Luminescence of 2D TMDC. In: Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-31450-1_8

Download citation

Publish with us

Policies and ethics