Skip to main content

Structure and Physico-Chemical Properties of Single Layer and Few-Layer TMDCs

  • Chapter
  • First Online:
Two-Dimensional Transition-Metal Dichalcogenides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 239))

  • 7619 Accesses

Abstract

The structure and properties of ultimately thin layers are often different from the corresponding bulk. This chapter describes mono- and few-layers of transition metal dichalcogenides, including phase stability and transformations, defects, and the corresponding physico-chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A dreidel is a four-sided spinning top. The dreidel is a Jewish variant on the T-totum, a gambling toy found in many European cultures.

  2. 2.

    We preserve here the notations of the original publication [72], the relationship with the grain boundaries described above is obvious from comparing Figs. 5.21 and 5.23.

References

  1. K. Park, J. Heremans, V. Scarola, D. Minic, Robustness of topologically protected surface states in layering of Bi\(_2\)Te\(_3\) thin films. Phys. Rev. Lett. 105, 186801 (2010)

    Article  Google Scholar 

  2. J. Brivio, D.T. Alexander, A. Kis, Ripples and layers in ultrathin MoS\(_2\) membranes. Nano Lett. 11(12), 5148 (2011)

    Article  Google Scholar 

  3. J.N. Coleman, M. Lotya, A. ONeill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011)

    Google Scholar 

  4. D. Yang, R. Frindt, Li-intercalation and exfoliation of WS\(_2\). J. Phys. Chem. Solids 57(6), 1113 (1996)

    Article  Google Scholar 

  5. P. Joensen, R. Frindt, S.R. Morrison, Single-layer MoS\(_2\). Mat. Res. Bull. 21(4), 457 (1986)

    Article  Google Scholar 

  6. S.J. Sandoval, D. Yang, R. Frindt, J. Irwin, Raman study and lattice dynamics of single molecular layers of MoS\(_2\). Phys. Rev. B 44(8), 3955 (1991)

    Article  Google Scholar 

  7. M. Py, R. Haering, Structural destabilization induced by lithium intercalation in MoS\(_2\) and related compounds. Can. J. Phys. 61(1), 76 (1983)

    Article  Google Scholar 

  8. M. Kertesz, R. Hoffmann, Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106(12), 3453 (1984)

    Google Scholar 

  9. M.T. Janish, C.B. Carter, In situ TEM observations of the lithiation of molybdenum disulfide. Scripta Materialia 107, 22 (2015)

    Article  Google Scholar 

  10. D. Yang, S.J. Sandoval, W. Divigalpitiya, J. Irwin, R. Frindt, Structure of single-molecular-layer MoS\(_2\). Phys. Rev. B 43(14), 12053 (1991)

    Article  Google Scholar 

  11. T. Sekine, C. Julien, I. Samaras, M. Jouanne, M. Balkanski, Vibrational modifications on lithium intercalation in MoS\(_2\). Mater. Sci. Eng. B 3(1), 153 (1989)

    Article  Google Scholar 

  12. R. Gordon, D. Yang, E. Crozier, D. Jiang, R. Frindt, Structures of exfoliated single layers of WS\(_2\), MoS\(_2\), and MoSe\(_2\) in aqueous suspension. Phys. Rev. B 65(12), 125407 (2002)

    Article  Google Scholar 

  13. T. Hu, R. Li, J. Dong, A new (2 x 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J. Chem. Phys. 139(17), 174702 (2013)

    Article  Google Scholar 

  14. S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-Zadeh, Atomically thin layers of MoS\(_2\) via a two step thermal evaporation-exfoliation method. Nanoscale 4(2), 461 (2012)

    Article  Google Scholar 

  15. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  16. C. Ramana, U. Becker, V. Shutthanandan, C. Julien, Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochem. Trans. 9(1), 8 (2008)

    Article  Google Scholar 

  17. C. Papageorgopoulos, W. Jaegermann, Li intercalation across and along the van der Waals surfaces of MoS\(_2\) (0001). Surf. Sci. 338(1), 83 (1995)

    Article  Google Scholar 

  18. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS\(_2\). Nano Lett. 11(12), 5111 (2011)

    Article  Google Scholar 

  19. G. Lucovsky, R. White, J. Benda, J. Revelli, Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides. Phys. Rev. B 7(8), 3859 (1973)

    Article  Google Scholar 

  20. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon, Kiddington, 2003)

    Google Scholar 

  21. E. Stern, Y. Yacoby, Structural disorder in perovskite ferroelectric crystals as revealed by XAFS. J. Phys. Chem. Solids 57(10), 1449 (1996)

    Article  Google Scholar 

  22. P. Fons, A.V. Kolobov, M. Krbal, J. Tominaga, K. Andrikopoulos, S. Yannopoulos, G. Voyiatzis, T. Uruga, Phase transitions in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 82(15), 155209 (2010)

    Article  Google Scholar 

  23. A. Schumacher, L. Scandella, N. Kruse, R. Prins, Single-layer MoS\(_2\) on mica: studies by means of scanning force microscopy. Surf. Sci. 289(1), L595 (1993)

    Google Scholar 

  24. X. Qin, D. Yang, R. Frindt, J. Irwin, Scanning tunneling microscopy of single-layer MoS\(_2\) in water and butanol. Ultramicroscopy 42, 630 (1992)

    Article  Google Scholar 

  25. V. Petkov, S.J.L. Billinge, P. Larson, S.D. Mahanti, T. Vogt, K.K. Rangan, M.G. Kanatzidis, Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS\(_2\). Phys. Rev. B 65(9), 092105 (2002)

    Article  Google Scholar 

  26. X. Rocquefelte, F. Boucher, P. Gressier, G. Ouvrard, P. Blaha, K. Schwarz, Mo cluster formation in the intercalation compound LiMoS\(_2\). Phys. Rev. B 62(4), 2397 (2000)

    Article  Google Scholar 

  27. H.L. Tsai, J. Heising, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Exfoliated-restacked phase of WS\(_2\). Chem. Mater. 9(4), 879 (1997)

    Article  Google Scholar 

  28. J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS\(_2\) and WS\(_2\): Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121(50), 11720 (1999)

    Google Scholar 

  29. J. Heising, M.G. Kanatzidis, Structure of restacked MoS\(_2\) and WS\(_2\) elucidated by electron crystallography. J. Am. Chem. Soc. 121(4), 638 (1999)

    Article  Google Scholar 

  30. E. Prouzet, J. Heising, M.G. Kanatzidis, Structure of restacked and pillared WS\(_2\): an X-ray absorption study. Chem. Mater. 15(2), 412 (2003)

    Article  Google Scholar 

  31. M. Kan, J. Wang, X.W. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, Structures and phase transition of a MoS\(_2\) monolayer. J. Phys. Chem. C 118(3), 1515 (2014)

    Article  Google Scholar 

  32. L. Mattheiss, Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8(8), 3719 (1973)

    Article  Google Scholar 

  33. B. Silbernagel, Lithium intercalation complexes of layered transition metal dichalcogenides: an NMR survey of physical properties. Solid State Commun. 17(3), 361 (1975)

    Article  Google Scholar 

  34. P. Williams, F. Shepherd, He II photoemission studies of transition metal dichalcogenides. J. Phys. C 6(1), L36 (1973)

    Article  Google Scholar 

  35. A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of 1T-WS\(_2\) and MoS\(_2\) phases. J. Phys. Chem. C 115(50), 24586 (2011)

    Article  Google Scholar 

  36. Y. Li, Y.L. Li, W. Sun, R. Ahuja, Dynamic stability of the single-layer transition metal dichalcogenides. Comp. Mater. Sci. 92, 206 (2014)

    Article  Google Scholar 

  37. K.A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat. Commun. 5 (2014). doi:10.1038/ncomms5214

  38. B.E. Brown, The crystal structures of WTe\(_2\) and high-temperature MoTe\(_2\). Acta Cryst. 20(2), 268 (1966)

    Article  Google Scholar 

  39. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS\(_2\). ACS Nano 5(12), 9703 (2011)

    Article  Google Scholar 

  40. R.C. Cooper, C. Lee, C.A. Marianetti, X. Wei, J. Hone, J.W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87(3), 035423 (2013)

    Article  Google Scholar 

  41. P. Miró, M. Ghorbani-Asl, T. Heine, Spontaneous ripple formation in MoS\(_2\) monolayers: Electronic structure and transport effects. Adv. Mater. 25(38), 5473 (2013)

    Article  Google Scholar 

  42. S.K. Singh, M. Neek-Amal, S. Costamagna, F. Peeters, Rippling, buckling, and melting of single-and multilayer MoS\(_2\). Phys. Rev. B 91(1), 014101 (2015)

    Article  Google Scholar 

  43. M. Kan, H.G. Nam, Y.H. Lee, Q. Sun, Phase stability and Raman vibration of the molybdenum ditelluride (MoTe\(_2\)) monolayer. Phys. Chem. Chem. Phys. 17(22), 14866 (2015)

    Article  Google Scholar 

  44. C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX\(_2\) transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116(16), 8983 (2012)

    Article  Google Scholar 

  45. Y.C. Lin, D.O. Dumcenco, Y.S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-To-metallic phase transition in single-layered MoS\(_2\). Nat. Nanotech. 9(5), 391 (2014)

    Article  Google Scholar 

  46. Y. Cheng, A. Nie, Q. Zhang, L.Y. Gan, R. Shahbazian-Yassar, U. Schwingenschlögl, Origin of the phase transition in lithiated molybdenum disulfide. ACS Nano 8(11), 11447 (2014)

    Article  Google Scholar 

  47. Y. Zhou, E.J. Reed, Structural phase stability control of monolayer MoTe\(_2\) with adsorbed atoms and molecules. J. Phys. Chem. B 119(37), 21674 (2015)

    Google Scholar 

  48. M.R. Ryzhikov, V.A. Slepkov, S.G. Kozlova, S.P. Gabuda, V.E. Fedorov, Solid-state reaction as a mechanism of 1T–2H transformation in MoS\(_2\) monolayers. J. Comput. Chem 36(28), 2131 (2015)

    Article  Google Scholar 

  49. R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS\(_2\). APL Mater. 2(9), 092516 (2014)

    Article  Google Scholar 

  50. S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok, D.H. Keum, J. Baik, D.H. Choe, K. Chang, K. Suenaga et al., Phase patterning for ohmic homojunction contact in MoTe\(_2\). Science 349(6248), 625 (2015)

    Article  Google Scholar 

  51. M. Yoshida, Y. Zhang, J. Ye, R. Suzuki, Y. Imai, S. Kimura, A. Fujiwara, Y. Iwasa, Controlling charge-density-wave states in nano-thick crystals of 1T-TaS\(_2\). Sci. Rep. 4 (2014). doi:10.1038/srep07302

  52. Y. Yu, F. Yang, X.F. Lu, Y.J. Yan, Y.H. Cho, L. Ma, X. Niu, S. Kim, Y.W. Son, D. Feng et al., Gate-tunable phase transitions in thin flakes of 1T-TaS\(_2\). Nat. Nanotech. 10(3), 270 (2015)

    Article  Google Scholar 

  53. P. Fazekas, E. Tosatti, Electrical, structural and magnetic properties of pure and doped 1T-TaS\(_2\). Philos. Mag. B 39(3), 229 (1979)

    Article  Google Scholar 

  54. P. Fazekas, E. Tosatti, Charge carrier localization in pure and doped 1T-TaS\(_2\). Physica B+C 99(1), 183 (1980)

    Article  Google Scholar 

  55. F. Zwick, H. Berger, I. Vobornik, G. Margaritondo, L. Forró, C. Beeli, M. Onellion, G. Panaccione, A. Taleb-Ibrahimi, M. Grioni, Spectral consequences of broken phase coherence in 1T-TaS\(_2\). Phys. Rev. Lett. 81(5), 1058 (1998)

    Article  Google Scholar 

  56. R.E. Thomson, B. Burk, A. Zettl, J. Clarke, Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS\(_2\). Phys. Rev. B 49(24), 16899 (1994)

    Article  Google Scholar 

  57. A. Spijkerman, J.L. de Boer, A. Meetsma, G.A. Wiegers, S. van Smaalen, X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS\(_2\) in (3+2)-dimensional superspace. Phys. Rev. B 56(21), 13757 (1997)

    Google Scholar 

  58. L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S. Brazovskii, D. Mihailovic, Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344(6180), 177 (2014)

    Article  Google Scholar 

  59. M.J. Hollander, Y. Liu, W.J. Lu, L.J. Li, Y.P. Sun, J.A. Robinson, S. Datta, Electrically driven reversible insulator-metal phase transition in 1T-TaS\(_2\). Nano Lett. 15(3), 1861 (2015)

    Article  Google Scholar 

  60. P. Chen, Y.H. Chan, X.Y. Fang, Y. Zhang, M.Y. Chou, S.K. Mo, Z. Hussain, A.V. Fedorov, T.C. Chiang, Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 6 (2015). doi:10.1038/ncomms9943

  61. P. Batson, Atomic and electronic structure of a dissociated 60\(^{\circ }\) misfit dislocation in Ge\(_{\text{x}}\)Si\(_{(1-\text{ x })}\). Phys. Rev. Lett. 83(21), 4409 (1999)

    Google Scholar 

  62. N. Alem, V.P. Dravid, Correlative deformation mechanisms in Ni\(_\text{ x }\)Co\(_{1-\text{ x }}\)O/ZrO\(_2\) (CaO) directionally solidified eutectic composites with a confined metallic interphase. Acta Materialia 56(16), 4378 (2008)

    Google Scholar 

  63. Y. Hajati, T. Blom, S. Jafri, S. Haldar, S. Bhandary, M. Shoushtari, O. Eriksson, B. Sanyal, K. Leifer, Improved gas sensing activity in structurally defected bilayer graphene. Nanotechnology 23(50), 505501 (2012)

    Article  Google Scholar 

  64. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, A.I. Kirkland, Dislocation-driven deformations in graphene. Science 337(6091), 209 (2012)

    Article  Google Scholar 

  65. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615 (2013)

    Article  Google Scholar 

  66. Y. Guo, D. Liu, J. Robertson, Chalcogen vacancies in monolayer transition metal dichalcogenides and fermi level pinning at contacts. Appl. Phys. Lett. 106(17), 173106 (2015)

    Article  Google Scholar 

  67. Z. Liu, K. Suenaga, Z. Wang, Z. Shi, E. Okunishi, S. Iijima, Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat. Commun. 2 (2011). doi:10.1038/ncomms1224

  68. H.P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012)

    Article  Google Scholar 

  69. H.P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS\(_2\): Evolution of atomic structure under electron irradiation. Phys. Rev. B 88(3), 035301 (2013)

    Article  Google Scholar 

  70. H. Liu, H. Zheng, F. Yang, L. Jiao, J. Chen, W. Ho, C. Gao, J. Jia, M. Xie, Line and point defects in MoSe\(_2\) bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 9(6), 6619 (2015)

    Article  Google Scholar 

  71. X. Zou, Y. Liu, B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13(1), 253 (2012)

    Article  Google Scholar 

  72. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013)

    Article  Google Scholar 

  73. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013)

    Article  Google Scholar 

  74. A. Azizi, X. Zou, P. Ercius, Z. Zhang, A.L. Elías, N. Perea-López, G. Stone, M. Terrones, B.I. Yakobson, N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5 (2014). doi:10.1038/ncomms5867

  75. Z. Zhang, X. Zou, V.H. Crespi, B.I. Yakobson, Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7(12), 10475 (2013)

    Article  Google Scholar 

  76. X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu et al., Large-area synthesis of monolayer and few-layer MoSe\(_2\) films on SiO\(_2\) substrates. Nano Lett. 14(5), 2419 (2014)

    Article  Google Scholar 

  77. J. Lin, S.T. Pantelides, W. Zhou, Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189 (2015)

    Article  Google Scholar 

  78. Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen et al., Controlled growth of high-quality monolayer WS\(_2\) layers on sapphire and imaging its grain boundary. ACS Nano 7(10), 8963 (2013)

    Article  Google Scholar 

  79. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS\(_2\) monolayers. Nano Lett. 13(8), 3447 (2012)

    Article  Google Scholar 

  80. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Tightly bound trions in monolayer MoS\(_2\). Nat. Mater. 12(3), 207 (2013)

    Article  Google Scholar 

  81. M.C. Prado, R. Nascimento, B.E. Faria, M.J. Matos, H. Chacham, B.R. Neves, Nanometre-scale identification of grain boundaries in MoS\(_2\) through molecular decoration. Nanotechnology 26(47), 475702 (2015)

    Article  Google Scholar 

  82. K. Dolui, I. Rungger, C.D. Pemmaraju, S. Sanvito, Possible doping strategies for MoS\(_2\) monolayers: an ab initio study. Phys. Rev. B 88(7), 075420 (2013)

    Article  Google Scholar 

  83. Y. Wang, B. Wang, R. Huang, B. Gao, F. Kong, Q. Zhang, First principles study of transition metal atom adsorption on MoS\(_2\) monolayer. Physica E 63, 276 (2014)

    Article  Google Scholar 

  84. C. Ataca, S. Ciraci, Functionalization of single-layer MoS\(_2\) honeycomb structures. J. Phys. Chem. C 115(27), 13303 (2011)

    Google Scholar 

  85. Y.C. Lin, D.O. Dumcenco, H.P. Komsa, Y. Niimi, A.V. Krasheninnikov, Y.S. Huang, K. Suenaga, Properties of individual dopant atoms in single-layer MoS\(_2\): Atomic structure, migration, and enhanced reactivity. Adv. Mater. 26(18), 2857 (2014)

    Article  Google Scholar 

  86. Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS\(_2\) and effect of applied electric field. Nanoscale Res. Lett. 8(1), 425 (2013)

    Article  Google Scholar 

  87. D. Voiry, A. Goswami, R. Kappera, C.C.C. Silva, D. Kaplan, T. Fujita, M. Chen, T. Asefa, M. Chhowalla, Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7(1), 45 (2015)

    Article  Google Scholar 

  88. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13(5), 1991 (2013)

    Article  Google Scholar 

  89. T. Eknapakul, P.D. King, M. Asakawa, P. Buaphet, R.H. He, S.K. Mo, H. Takagi, K.M. Shen, F. Baumberger, T. Sasagawa et al., Electronic structure of a quasi-freestanding MoS\(_2\) monolayer. Nano Lett. 14(3), 1312 (2014)

    Article  Google Scholar 

  90. B. Huang, M. Yoon, B.G. Sumpter, S.H. Wei, F. Liu, Alloy engineering of defect properties in semiconductors: suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett. 115(12), 126806 (2015)

    Article  Google Scholar 

  91. L.Y. Gan, Q. Zhang, Y.J. Zhao, Y. Cheng, U. Schwingenschlögl, Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo\(_{1- \text{ x }}\)W\(_\text{ x }\)X\(_2\) (X = S, Se, and Te). Sci. Rep. 4 (2014). doi:10.1038/srep06691

  92. R. Frindt, Single crystals of MoS\(_2\) several molecular layers thick. J. Appl. Phys. 37(4), 1928 (1966)

    Article  Google Scholar 

  93. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. van der Zant, N. Agraït, G. Rubio-Bollinger, Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS\(_2\). Nanoscale Res. Lett. 7(1), 1 (2012)

    Article  Google Scholar 

  94. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)

    Article  Google Scholar 

  95. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, On the mechanical behavior of WS\(_2\) nanotubes under axial tension and compression. Proc. Nat. Acad. Sci. 103(3), 523 (2006)

    Article  Google Scholar 

  96. T. Lorenz, J.O. Joswig, G. Seifert, Stretching and breaking of monolayer MoS\(_2\) an atomistic simulation. 2D Mater. 1(1), 011007 (2014)

    Google Scholar 

  97. Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, J. Li, Mechanical and electronic properties of monolayer MoS\(_2\) under elastic strain. Phys. Lett. A 376(12), 1166 (2012)

    Article  Google Scholar 

  98. J. Li, N.V. Medhekar, V.B. Shenoy, Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 117(30), 15842 (2013)

    Article  Google Scholar 

  99. T. Lorenz, M. Ghorbani-Asl, J.O. Joswig, T. Heine, G. Seifert, Is MoS\(_2\) a robust material for 2d electronics? Nanotechnology 25(44), 445201 (2014)

    Article  Google Scholar 

  100. T. Lorenz, D. Teich, J.O. Joswig, G. Seifert, Theoretical study of the mechanical behavior of individual TiS\(_2\) and MoS\(_2\) nanotubes. J. Phys. Chem. C 116(21), 11714 (2012)

    Article  Google Scholar 

  101. J.W. Jiang, Z. Qi, H.S. Park, T. Rabczuk, Elastic bending modulus of single-layer molybdenum disulfide (MoS\(_2\)): finite thickness effect. Nanotechnology 24(43), 435705 (2013)

    Article  Google Scholar 

  102. L.F. Huang, P.L. Gong, Z. Zeng, Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS\(_2\). Phys. Rev. B 90(4), 045409 (2014)

    Article  Google Scholar 

  103. W. Zhan-Yu, Z. Yan-Li, W. Xue-Qing, W. Fei, S. Qiang, G. Zheng-Xiao, J. Yu, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide. Chin. Phys. B 24(2), 026510 (2015)

    Google Scholar 

  104. D.J. Late, S.N. Shirodkar, U.V. Waghmare, V.P. Dravid, C. Rao, Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single-and few-layer MoSe\(_2\) and WSe\(_2\). ChemPhysChem 15(8), 1592 (2014)

    Article  Google Scholar 

  105. X. Wei, Y. Wang, Y. Shen, G. Xie, H. Xiao, J. Zhong, G. Zhang, Phonon thermal conductivity of monolayer MoS\(_2\): A comparison with single layer graphene. Appl. Phys. Lett. 105(10), 103902 (2014)

    Article  Google Scholar 

  106. W. Li, J. Carrete, N. Mingo, Thermal conductivity and phonon linewidths of monolayer MoS\(_2\) from first principles. Appl. Phys. Lett. 103(25), 253103 (2013)

    Article  Google Scholar 

  107. Y. Cai, J. Lan, G. Zhang, Y.W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS\(_2\). Phys. Rev. B 89(3), 035438 (2014)

    Article  Google Scholar 

  108. X. Liu, G. Zhang, Q.X. Pei, Y.W. Zhang, Phonon thermal conductivity of monolayer MoS\(_2\) sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013)

    Article  Google Scholar 

  109. J.W. Jiang, X. Zhuang, T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS\(_2\). Sci. Rep. 3 (2013). doi:10.1038/srep02209

  110. R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. Xing, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8(1), 986 (2014)

    Article  Google Scholar 

  111. S. Sahoo, A.P. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS\(_2\). J. Phys. Chem. C 117(17), 9042 (2013)

    Article  Google Scholar 

  112. N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, T. Yu, Thermal conductivity determination of suspended mono-and bilayer WS\(_2\) by Raman spectroscopy. Nano Res. 8(4), 1210 (2015)

    Article  Google Scholar 

  113. A. Taube, A. Lapinska, J. Judek, M. Zdrojek, Temperature-dependent thermal properties of supported MoS\(_2\) monolayers. Int. ACS Appl. Mater. 7(9), 5061 (2015)

    Google Scholar 

  114. W. Huang, H. Da, G. Liang, Thermoelectric performance of MX\(_2\) (M= Mo, W; X= S, Se) monolayers. J. Appl. Phys. 113(10), 104304 (2013)

    Article  Google Scholar 

  115. W. Huang, X. Luo, C.K. Gan, S.Y. Quek, G. Liang, Theoretical study of thermoelectric properties of few-layer MoS\(_2\) and WSe\(_2\). Phys. Chem. Chem. Phys. 16(22), 10866 (2014)

    Article  Google Scholar 

  116. S. Kumar, U. Schwingenschlögl, Thermoelectric response of bulk and monolayer MoSe\(_2\) and WSe\(_2\). Chem. Mater. 27(4), 1278 (2015)

    Article  Google Scholar 

  117. M. Kastner, Bonding bands, lone-pair bands, and impurity states in chalcogenidesemiconductors. Phys. Rev. Lett. 28(6), 355–357 (1972)

    Google Scholar 

  118. M. Tahir, U. Schwingenschlögl, Tunable thermoelectricity in monolayers of MoS\(_2\) and other group-VI dichalcogenides. New J. Phys. 16(11), 115003 (2014)

    Article  Google Scholar 

  119. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS\(_2\), MoSe\(_2\), WS\(_2\), and WSe\(_2\). Phys. Rev. B 90(20), 205422 (2014)

    Article  Google Scholar 

  120. H.L. Liu, C.C. Shen, S.H. Su, C.L. Hsu, M.Y. Li, L.J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105(20), 201905 (2014)

    Article  Google Scholar 

  121. A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 96(21), 213116 (2010)

    Article  Google Scholar 

  122. N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, C. Chang, J. Fan, L. Zhang, J. Wang, Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Sci. Rep. 5 (2015). doi:10.1038/srep14646

  123. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS\(_2\) from first principles. Phys. Rev. B 85(11), 115317 (2012)

    Article  Google Scholar 

  124. S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, et al., High-mobility and low-power thin-film transistors based on multilayer MoS\(_2\) crystals. Nat. Commun. 3 (2012). doi:10.1038/ncomms2018

  125. S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS\(_2\) transistors with scandium contacts. Nano Lett. 13(1), 100 (2012)

    Article  Google Scholar 

  126. N. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS\(_2\) field-effect transistors on SiO\(_2\). Appl. Phys. Lett. 102(12), 123105 (2013)

    Article  Google Scholar 

  127. W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS\(_2\) field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013)

    Article  Google Scholar 

  128. J.H. Strait, P. Nene, F. Rana, High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS\(_2\). Phys. Rev. B 90(24), 245402 (2014)

    Article  Google Scholar 

  129. G.D. Moore, A study of the oxidation kinetics of synthetic molybdenum diselenide. ASLE Trans. 13(2), 117 (1970)

    Article  Google Scholar 

  130. M.T. Lavik, T.M. Medved, G.D. Moore, Oxidation characteristics of MoS\(_2\) and other solid lubricants. ASLE Trans. 11(1), 44 (1968)

    Article  Google Scholar 

  131. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe\(_2\) versus MoS\(_2\). Nano Lett. 12(11), 5576 (2012)

    Google Scholar 

  132. C.H. Lee, E.C. Silva, L. Calderin, M.A.T. Nguyen, M.J. Hollander, B. Bersch, T.E. Mallouk, J.A. Robinson, Tungsten ditelluride: a layered semimetal. Sci. Rep. 5 (2015). doi:10.1038/srep10013

  133. Y. Liu, C. Tan, H. Chou, A. Nayak, D. Wu, R. Ghosh, H.Y. Chang, Y. Hao, X. Wang, J.S. Kim et al., Thermal oxidation of WSe\(_2\) nanosheets adhered on SiO\(_2\)/Si substrates. Nano Lett. 15(8), 4979 (2015)

    Article  Google Scholar 

  134. K. Santosh, R.C. Longo, R.M. Wallace, K. Cho, Surface oxidation energetics and kinetics on MoS\(_2\) monolayer. J. Appl. Phys. 117(13), 135301 (2015)

    Article  Google Scholar 

  135. H. Liu, N. Han, J. Zhao, Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Adv. 5(23), 17572 (2015)

    Article  Google Scholar 

  136. I. Paradisanos, E. Kymakis, C. Fotakis, G. Kioseoglou, E. Stratakis, Intense femtosecond photoexcitation of bulk and monolayer MoS\(_2\). Appl. Phys. Lett. 105(4), 041108 (2014)

    Article  Google Scholar 

  137. E.M. Mannebach, K.A.N. Duerloo, L.A. Pellouchoud, M.J. Sher, S. Nah, Y.H. Kuo, Y. Yu, A.F. Marshall, L. Cao, E.J. Reed et al., Ultrafast electronic and structural response of monolayer MoS\(_2\) under intense photoexcitation conditions. ACS Nano 8(10), 10734 (2014)

    Article  Google Scholar 

  138. E.M. Mannebach, R. Li, K.A. Duerloo, C. Nyby, P. Zalden, T. Vecchione, F. Ernst, A.H. Reid, T. Chase, X. Shen et al., Dynamic structural response and deformations of monolayer MoS\(_2\) visualized by femtosecond electron diffraction. Nano Lett. 15(10), 6889 (2015)

    Article  Google Scholar 

  139. N. Bandaru, R.S. Kumar, J. Baker, O. Tschauner, T. Hartmann, Y. Zhao, R. Venkat, Structural stability of WS\(_2\) under high pressure. Int. J. Mod. Phys. B 28, 1450168 (2014)

    Article  Google Scholar 

  140. N. Bandaru, R.S. Kumar, D. Sneed, O. Tschauner, J. Baker, D. Antonio, S.N. Luo, T. Hartmann, Y. Zhao, R. Venkat, Effect of pressure and temperature on structural stability of MoS\(_2\). J. Phys. Chem. C 118(6), 3230 (2014)

    Article  Google Scholar 

  141. K. Vasu, H. Matte, S.N. Shirodkar, V. Jayaram, K. Reddy, U.V. Waghmare, C. Rao, Effect of high-temperature shock-wave compression on few-layer MoS\(_2\), WS\(_2\) and MoSe\(_2\). Chem. Phys. Lett. 582, 105 (2013)

    Article  Google Scholar 

  142. M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M.S. Fuhrer, K. Ueno, K. Tsukagoshi, Self-limiting layer-by-layer oxidation of atomically thin WSe\(_2\). Nano Lett. 15(3), 2067 (2015)

    Article  Google Scholar 

  143. S. Iijima et al., Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)

    Article  Google Scholar 

  144. R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide. Nature 360(6403), 444 (1992)

    Article  Google Scholar 

  145. Y. Feldman, E. Wasserman, D. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS\(_2\) nested inorganic fullerenes and nanotubes. Science 267(5195), 222 (1995)

    Article  Google Scholar 

  146. A. Rothschild, J. Sloan, R. Tenne, Growth of WS\(_2\) nanotubes phases. J. Am. Chem. Soc. 122(21), 5169 (2000)

    Article  Google Scholar 

  147. M. Nath, A. Govindaraj, C. Rao, Simple synthesis of MoS\(_2\) and WS\(_2\) nanotubes. Adv. Mater. 13(4), 283 (2001)

    Article  Google Scholar 

  148. A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R. Tenne, Study of the growth mechanism of WS\(_2\) nanotubes produced by a fluidized bed reactor. J. Mater. Chem. 14(4), 617 (2004)

    Article  Google Scholar 

  149. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic, Self-assembly of subnanometer-diameter single-wall MoS\(_2\) nanotubes. Science 292(5516), 479 (2001)

    Article  Google Scholar 

  150. M. Nath, C.N.R. Rao, MoSe\(_2\) and WSe\(_2\) nanotubes and related structures. Chem. Commun. pp. 2236–2237 (2001)

    Google Scholar 

  151. D.H. Galván, R. Rangel, E. Adem, Formation of MoTe\(_2\) nanotubes by electron irradiation. Fullerene. Sci. Technol. 7(3), 421 (1999)

    Article  Google Scholar 

  152. E. Flores, A. Tlahuice, E. Adem, D.H. Galvan, Optimization of the electron irradiation in the production of MoTe\(_2\) nanotubes. Fullerene. Sci. Technol. 9(1), 9 (2001)

    Article  Google Scholar 

  153. L. Qiu, V.G. Pol, Y. Wei, A. Gedanken, A two-step process for the synthesis of MoTe\(_2\) nanotubes: combining a sonochemical technique with heat treatment. J. Mater. Chem. 13(12), 2985 (2003)

    Article  Google Scholar 

  154. W. Li, G. Zhang, M. Guo, Y.W. Zhang, Strain-tunable electronic and transport properties of MoS\(_2\) nanotubes. Nano Res. 7(4), 1 (2014)

    Article  Google Scholar 

  155. N. Li, G. Lee, Y.H. Jeong, K.S. Kim, Tailoring electronic and magnetic properties of MoS\(_2\) nanotubes. J. Phys. Chem. C 119(11), 6405 (2015)

    Article  Google Scholar 

  156. K.X. Chen, X.M. Wang, D.C. Mo, S.S. Lyu, Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. J. Phys. Chem. C 119, 26706 (2015)

    Google Scholar 

  157. A.O. Pereira, C.R. Miranda, First-principles investigation of transition metal dichalcogenide nanotubes for Li and Mg ion battery applications. J. Phys. Chem. C 119(8), 4302 (2015)

    Article  Google Scholar 

  158. X. Wu, Z. Xu, X. Zeng, Single-walled MoTe\(_2\) nanotubes. Nano Lett. 7(10), 2987 (2007)

    Article  Google Scholar 

  159. M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Electromechanics in MoS\(_2\) and WS\(_2\): nanotubes vs. monolayers. Sci. Rep. 3 (2013). doi:10.1038/srep02961

  160. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, A. Seabaugh, The MoS\(_2\) nanotubes with defect-controlled electric properties. Nanoscale Res. Lett 6(1), 26 (2011)

    Google Scholar 

  161. D. Maharaj, B. Bhushan, Nanomechanical behavior of MoS\(_2\) and WS\(_2\) multi-walled nanotubes and carbon nanohorns. Sci. Rep. 5 (2015). doi:10.1038/srep08539

  162. M. Strojnik, A. Kovic, A. Mrzel, J. Buh, J. Strle, D. Mihailovic, MoS\(_2\) nanotube field effect transistors. AIP Adv. 4, 097114 (2015)

    Article  Google Scholar 

  163. S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan, S. Vishwanath, S. Rouvimov, W. Hwang, H. Xing, D. Jena et al., Synthesized multiwall MoS\(_2\) nanotube and nanoribbon field-effect transistors. Appl. Phys. Lett. 106(2), 022114 (2015)

    Article  Google Scholar 

  164. R. Levi, O. Bitton, G. Leitus, R. Tenne, E. Joselevich, Field-effect transistors based on WS\(_2\) nanotubes with high current-carrying capacity. Nano Lett. 13(8), 3736 (2013)

    Article  Google Scholar 

  165. J. Choi, H. Chen, F. Li, L. Yang, S.S. Kim, R.R. Naik, P.D. Ye, J.H. Choi, Nanomanufacturing of 2d transition metal dichalcogenide materials using self-assembled DNA nanotubes. Small 11(41), 5520 (2015)

    Article  Google Scholar 

  166. K. Vasu, S.S. Yamijala, A. Zak, K. Gopalakrishnan, S.K. Pati, C. Rao, Clean WS\(_2\) and MoS\(_2\) nanoribbons generated by laser-induced unzipping of the nanotubes. Small 11, 3916 (2015)

    Article  Google Scholar 

  167. X.X. Song, D. Liu, V. Mosallanejad, J. You, T.Y. Han, D.T. Chen, H.O. Li, G. Cao, M. Xiao, G.C. Guo et al., A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe\(_2\). Nanoscale 7, 16867 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kolobov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolobov, A.V., Tominaga, J. (2016). Structure and Physico-Chemical Properties of Single Layer and Few-Layer TMDCs. In: Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-31450-1_5

Download citation

Publish with us

Policies and ethics