Skip to main content

Truffles and Small Mammals

  • Chapter
  • First Online:
True Truffle (Tuber spp.) in the World

Part of the book series: Soil Biology ((SOILBIOL,volume 47))

Abstract

The diversity of small mammals reported to feed on true truffles is revised. Potential adaptations and specific capacities linked to mycophagy are discussed. The nutritional qualities of true truffles are summarized and confronted with digestive capacities and food preferences of small mammals. The recent discovery that the primarily insectivorous shrews (Sorex spp.) feed on true truffles, apparently in a selective manner, led to the hypothesis that allometric constraints on acceptable food quality limit mycophagy in extremely small mammal species and may be at the origin of more selective mycophagy. Foraging behaviour, hoarding and hibernation are recognized as factors influencing the spatial and temporal patterns of truffle spore dispersal. Case studies of the interrelationships between habitat preferences of small mammals, the spatial distribution of truffle species and the plant community succession are reported. The potential role of truffle spore dispersal by small mammals in the truffle life cycle is briefly discussed, hypothesizing that the dispersal of ascospores and/or microconidia contributes to mating in true truffles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980–1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96(6):447–453. doi:10.1016/S0953-7562(09)81089-7

    Article  Google Scholar 

  • Andary C, Privat G, Bourrier MJ (1985) Variations of monomethylhydrazine content in Gyromitra esculenta. Mycologia 77(2):259–264. doi:10.2307/3793077

    Article  CAS  Google Scholar 

  • Bertolino S, Vizzini A, Wauters LA, Tosi G (2004) Consumption of hypogeous and epigeous fungi by the red squirrel (Sciurus vulgaris) in subalpine conifer forests. For Ecol Manage 202(1):227–233. doi:10.1016/j.foreco.2004.07.024

    Article  Google Scholar 

  • Bielby J, Mace GM, Bininda‐Emonds ORP, Cardillo M, Gittleman JL, Jones KE, Orme CDL, Purvis L (2007) The fast‐slow continuum in mammalian life history: an empirical reevaluation. Am Nat 169(6):748–757. doi:10.1086/516847

    Article  CAS  PubMed  Google Scholar 

  • Bozinovic F, Muñoz-Pedreros A (1995) Nutritional ecology and digestive responses of an omnivorous-insectivorous rodent (Abrothrix longipilis) feeding on fungus. Physiol Zool 68(3):474–489

    Article  Google Scholar 

  • Butet A, Delettre YR (2011) Diet differentiation between European arvicoline and murine rodents. Acta Theriol 56(4):297–304. doi:10.1007/s13364-011-0049-6

    Article  Google Scholar 

  • Carey AB (1995) Sciurids in Pacific Northwest managed and old-growth forests. Ecol Appl 5(3):648–661

    Article  Google Scholar 

  • Carey AB, Colgan W, Trappe JM, Molina R (2002) Effects of forest management on truffle abundance and squirrel diets. Northwest Sci, WSU Press. http://hdl.handle.net/2376/949

  • Cázares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86(4):507–510. doi:10.2307/3760743

    Article  Google Scholar 

  • Claridge A, Cork S (1994) Nutritional-value of hypogeal fungal sporocarps for the long-nosed Potoroo (Potorous-Tridactylus), a forest-dwelling mycophagous marsupial. Aust J Zool 42(6):701–710. doi:10.1071/ZO9940701

    Article  Google Scholar 

  • Claridge AW, Trappe JM (2005) Sporocarp mycophagy: nutritional, behavioural, evolutionary and physiological aspects. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn, Mycology series vol 23. Taylor & Francis, Boca Raton, pp 599–611

    Google Scholar 

  • Claridge AW, Trappe JM, Cork SJ, Claridge DL (1999) Mycophagy by small mammals in the coniferous forests of North America: nutritional value of sporocarps of Rhizopogon vinicolor, a common hypogeous fungus. J Comp Physiol B 169(3):172–178. doi:10.1007/s003600050208

    Article  CAS  PubMed  Google Scholar 

  • Coli R, Maurizi Coli A, Granetti B, Damiani P (1990) Composizione chimica e valore nutritivo del tartufo nero (T. melanosporum Vitt.) e del tartufo bianco (T. magnatum Pico) raccolti in Umbria. In: Bencivenga M, Granetti B (eds) Atti del 2° congresso internazionale sul tartufo. Comunitá Montana dei Monti Martani e del Serano, Spoleto, 24–27 Nov 1988, pp 511–516

    Google Scholar 

  • Cork SJ (1994) Digestive constraints on dietary scope in small and moderately-small mammals: how much do we really understand? In: The digestive system in mammals—Food form and function. Cambridge University Press, Cambridge, pp 337–369

    Chapter  Google Scholar 

  • Cork SJ, Kenagy GJ (1989a) Nutritional value of hypogeous fungus for a forest-dwelling ground squirrel. Ecology 70(3):577–586. doi:10.2307/1940209

    Article  Google Scholar 

  • Cork SJ, Kenagy GJ (1989b) Rates of gut passage and retention of hypogeous fungal spores in two forest-dwelling rodents. J Mammal 70(3):512–519. doi:10.2307/1381423

    Article  Google Scholar 

  • Currah RS, Smreciu EA, Lehesvirta T, Niemi M, Larsen KW (2000) Fungi in the winter diets of northern flying squirrels and red squirrels in the boreal mixedwood forest of northeastern Alberta. Can J Bot 78(12):1514–1520. doi:10.1139/b00-123

    Google Scholar 

  • Danks MA (2012) Gut-retention time in mycophagous mammals: a review and a study of truffle-like fungal spore retention in the swamp wallaby. Fungal Ecol 5(2):200–210. doi:10.1016/j.funeco.2011.08.005

    Article  Google Scholar 

  • Dodd NL, States JS, Rosenstock SS (2003) Tassel-eared squirrel population, habitat condition, and dietary relationships in North-Central Arizona. J Wildl Manage 67(3):622–633. doi:10.2307/3802719

    Article  Google Scholar 

  • Donaldson R, Stoddart M (1994) Detection of hypogeous fungi by Tasmanian bettong (Bettongia gaimardi: Marsupialia; Macropodoidea). J Chem Ecol 20(5):1201–1207. doi:10.1007/BF02059754

    Article  CAS  PubMed  Google Scholar 

  • Dróżdż D (1966) Food habits and food supply of rodents in the beech forest. Acta Theriol 11:363–384. doi:10.4098/AT.arch.66-15

    Article  Google Scholar 

  • Dubay SA, Hayward GD, Martínez del Rio C (2008) Nutritional value and diet preference of arboreal lichens and hypogeous fungi for small mammals in the Rocky Mountains. Can J Zool 86(8):851–862. doi:10.1139/Z08-054

    Article  CAS  Google Scholar 

  • Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52(1):1–31

    Google Scholar 

  • Frank J, Barry S, Madden J, Southworth D (2008) Oaks belowground: mycorrhizas, truffles, and small mammals. In: Proceedings of the sixth Californian oak symposium: today’s challenges, tomorrow’s opportunities. USDA Forest Service Pacific Southwest Research Station, General Technical Report GTR-PSW-217, Albany, pp 131–138

    Google Scholar 

  • Frank JL, Anglin S, Carrington EM, Taylor DS, Viratos B, Southworth D (2009) Rodent dispersal of fungal spores promotes seedling establishment away from mycorrhizal networks on Quercus garryana. Botany 87(9):821–829. doi:10.1139/B09-044

    Article  CAS  Google Scholar 

  • Gliwicz J, Taylor JRE (2002) Comparing life histories of shrews and rodents. Acta Theriol 47(1):185–208. doi:10.1007/BF03192487

    Article  Google Scholar 

  • Gomez DM, Anthony RG, Hayes JP (2005) Influence of thinning of Douglas-fir forests on population parameters and diet of northern flying squirrels. J Wild Manage 69(4):1670–1682. doi:10.2193/0022-541X(2005)69[1670:IOTODF]2.0.CO;2

    Article  Google Scholar 

  • Grönwall O, Pehrson Å (1984) Nutrient content in fungi as a primary food of the red squirrel Sciurus vulgaris L. Oecologia 64(2):230–231. doi:10.1007/BF00376875

    Article  Google Scholar 

  • Hanski I (1984) Food consumption, assimilation and metabolic rate in six species of shrew (Sorex and Neomys). Ann Zool Fenn 21(2):157–165

    Google Scholar 

  • Hansson L (1985) Clethrionomys food: generic, specific and regional characteristics. Ann Zool Fenn 22(3):315–318

    Google Scholar 

  • Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, Williams G, Stafford K, Kumar L, Lee T, Hobart C, Trappe J, Vilgalys R, McLaughlin DJ (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol 22(6):1717–1732. doi:10.1111/mec.12135

    Article  CAS  PubMed  Google Scholar 

  • Holmes DJ, Austad SN (1994) Fly now, die later: life-history correlates of gliding and flying in mammals. J Mammal 75(1):206–224. doi:10.2307/1382255

    Article  Google Scholar 

  • Jacobs KM, Luoma DL (2008) Small mammal mycophagy response to variations in green-tree retention. J Wildl Manage 72(8):1747–1755. doi:10.2193/2007-341

    Article  Google Scholar 

  • Johnson CN (1994) Nutritional ecology of a mycophagous marsupial in relation to production of hypogeous fungi. Ecology 75(7):2015–2021. doi:10.2307/1941606

    Article  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11(12):503–507. doi:10.1016/S0169-5347(96)10053-7

    Article  CAS  PubMed  Google Scholar 

  • Kataržytė M, Kutorga E (2011) Small mammal mycophagy in hemiboreal forest communities of Lithuania. Cent Eur J Biol 6(3):446–456. doi:10.2478/s11535-011-0006-z

    Google Scholar 

  • Kotter MM, Farentinos RC (1984) Tassel-eared squirrels as spore dispersal agents of hypogeous mycorrhizal fungi. J Mammal 65(4):684–687. doi:10.2307/1380853

    Article  Google Scholar 

  • Kumerloeve H (1968) Über die Pilznahrung des Eichhörnchens. Veröff Naturwiss Vereins Osnabrück 32:161–164

    Google Scholar 

  • Læssøe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111(9):1075–1099. doi:10.1016/j.mycres.2007.08.004

    Article  PubMed  Google Scholar 

  • Lehmkuhl JF, Gould LE, Cázares E, Hosford DR (2004) Truffle abundance and mycophagy by northern flying squirrels in eastern Washington forests. For Ecol Manage 200(1):49–65. doi:10.1016/j.foreco.2004.06.006

    Article  Google Scholar 

  • Linde CC, Selmes H (2012) Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffiéres in Australia. Appl Environ Microbiol 78(18):6534–6539. doi:10.1128/AEM.01558-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsdale JM, Tevis LP (1951) The dusky-footed wood rat. University of California Press, Berkeley

    Google Scholar 

  • List PH, Luft P (1968) Gyromitrin, das gift der frühjahrslorchel. 16. Mitt. über Pilzinhaltsstoffe. Arch Pharm 301(4):294–305. doi:10.1002/ardp.19683010410

    Article  CAS  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156(2):201–219. doi:10.1086/303383

    Article  PubMed  Google Scholar 

  • Lurz PWW, South AB (1998) Cached fungi in non-native conifer forests and their importance for red squirrels (Sciurus vulgaris L.). J Zool 246(4):468–471. doi:10.1111/j.1469-7998.1998.tb00184.x

    Article  Google Scholar 

  • MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maser C, Maser Z (1987) Notes on mycophagy in four species of mice in the genus Peromyscus. Great Basin Nat 47(2):308–313

    Google Scholar 

  • Maser C, Maser Z (1988) Mycophagy of red-backed voles, Clethrionomys californicus and C. gapperi. Great Basin Nat 48(2):269–273

    Google Scholar 

  • Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809. doi:10.2307/1938784

    Article  Google Scholar 

  • Maser C, Maser Z, Molina R (1988) Small-mammal mycophagy in rangelands of central and southeastern Oregon. J Range Manage 41(4):309–312

    Article  Google Scholar 

  • Maser C, Claridge A, Trappe J (2008) Trees, truffles, and beasts: how forests function. Rutgers University Press, Piscataway

    Google Scholar 

  • McIlwee AP, Johnson CN (1998) The contribution of fungus to the diets of three mycophagous marsupials in eucalyptus forests, revealed by stable isotope analysis. Funct Ecol 12(2):223–231. doi:10.1046/j.1365-2435.1998.00181.x

    Article  Google Scholar 

  • Meyer MD, North MP, Kelt DA (2005) Fungi in the diets of northern flying squirrels and lodgepole chipmunks in the Sierra Nevada. Can J Zool 83(12):1581–1589. doi:10.1139/z05-156

    Article  Google Scholar 

  • Murat C, Martin F (2008) Sex and truffles: first evidence of Perigord black truffle outcrosses. New Phytol 180(2):260–263. doi:10.1111/j.1469-8137.2008.02634.x

    Article  PubMed  Google Scholar 

  • Murat C, Zampieri E, Vizzini A, Bonfante P (2008) Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol 178(4):699–702. doi:10.1111/j.1469-8137.2008.02449.x

    Article  PubMed  Google Scholar 

  • Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199(1):176–187. doi:10.1111/nph.12264

    Article  CAS  PubMed  Google Scholar 

  • Nieminen P, Hyvärinen H (2000) Seasonality of leptin levels in the BAT of the common shrew (Sorex araneus). Z Naturforsch C 55(5–6):455–460. doi:10.1515/znc-2000-5-623

    CAS  PubMed  Google Scholar 

  • Orczán ÁK, Vetter J, Merényi Z, Bonifert E, Bratek Z (2012) Mineral composition of hypogeous fungi in Hungary. J Appl Bot Food Qual 85(1):100–104

    Google Scholar 

  • Paolocci F, Rubini A, Riccioni C, Arcioni S (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72(4):2390–2393. doi:10.1128/AEM.72.4.2390-2393.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor J, Dewey B, Christian DP (1996) Carbon and nutrient mineralization and fungal spore composition of fecal pellets from voles in Minnesota. Ecography 19(1):52–61. doi:10.1111/j.1600-0587.1996.tb00154.x

    Article  Google Scholar 

  • Piattoni F, Ori F, Morara M, Iotti M, Zambonelli A (2012) The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycol 47(2):145–153. doi:10.5586/am.2012.017

    Article  Google Scholar 

  • Piattoni F, Amicucci A, Iotti M, Ori F, Stocchi V, Zambonelli A (2014) Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fungal Ecol 9:52–60. doi:10.1016/j.funeco.2014.03.002

    Article  Google Scholar 

  • Prevedello JA, Dickman CR, Vieira MV, Vieira EM (2013) Population responses of small mammals to food supply and predators: a global meta-analysis. J Anim Ecol 82(5):927–936. doi:10.1111/1365-2656.12072

    Article  PubMed  Google Scholar 

  • Rosentreter R, Hayward GD, WicklowHoward M (1997) Northern flying squirrel seasonal food habits in the interior conifer forests of Central Idaho, USA. Northwest Sci 71(2):97–102

    Google Scholar 

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90(3):891–926. doi:10.1111/brv.12137

    Article  Google Scholar 

  • Sakaguchi E (2003) Digestive strategies of small hindgut fermenters. Anim Sci J 74(5):327–337. doi:10.1046/j.1344-3941.2003.00124.x

    Article  Google Scholar 

  • Saltarelli R, Ceccaroli P, Cesari P, Barbieri E, Stocchi V (2008) Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem 109(1):8–16. doi:10.1016/j.foodchem.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  • Schickmann S, Kräutler K, Kohl G, Nopp-Mayr U, Krisai-Greilhuber I, Hackländer K, Urban A (2011) Comparison of extraction methods applicable to fungal spores in faecal samples from small mammals. Sydowia 63(2):237–247

    Google Scholar 

  • Schickmann S, Urban A, Kräutler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170(2):395–409. doi:10.1007/s00442-012-2303-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shattuck MR, Williams SA (2010) Arboreality has allowed for the evolution of increased longevity in mammals. Proc Natl Acad Sci USA 107(10):4635–4639. doi:10.1073/pnas.0911439107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidlar K (2012) The role of sciurids and murids in the dispersal of truffle-forming ectomycorrhizal fungi in the Interior Cedar-Hemlock biogeoclimatic zone of British Columbia. PhD thesis. University of British Columbia

    Google Scholar 

  • Smith WP (2007) Ecology of Glaucomys sabrinus: habitat, demography, and community relations. J Mammal 88(4):862–881. doi:10.1644/06-MAMM-S-371R1.1

    Article  Google Scholar 

  • Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulphide: the secret for black truffle hunting by animals? Mycol Res 94(2):277–278. doi:10.1016/S0953-7562(09)80630-8

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8(11):1837–1850. doi:10.1046/j.1365-294x.1999.00773.x

    Article  CAS  PubMed  Google Scholar 

  • Taylor DS, Frank J, Southworth D (2009) Mycophagy in Botta’s Pocket Gopher (Thomomys bottae) in Southern Oregon. Northwest Sci 83(4):367–370. doi:10.3955/046.083.0408

    Article  Google Scholar 

  • Terwilliger J, Pastor J (1999) Small mammals, ectomycorrhizae, and conifer succession in Beaver Meadows. Oikos 85(1):83–94. doi:10.2307/3546794

    Article  Google Scholar 

  • Tevis L Jr (1952) Autumn foods of chipmunks and golden-mantled ground squirrels in the northern Sierra Nevada. J Mammal 33(2):198–205. doi:10.2307/1375929

    Article  Google Scholar 

  • Trappe JM, Molina R, Luoma DL, Cázares E, Pilz, D, Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. General Technical Report PNW-GTR-772. USDA, Pacific Northwest Research Station, Oregon

    Google Scholar 

  • Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108(7):749–758. doi:10.1017/S0953756204000553

    Article  CAS  PubMed  Google Scholar 

  • Urban A, Kataržytė M, Schickman S, Kräutler K, Pla T (2012) Is small mammal mycophagy relevant for truffle cultivation? Acta Mycol 47(2):139–143. doi:10.5586/am.2012.016

    Article  Google Scholar 

  • Vernes K, Poirier N (2007) Use of a Robin’s nest as a cache site for truffles by a red squirrel. Northeast Nat 14(1):145–149. doi:10.1656/1092-6194(2007)14[145:UOARNA]2.0.CO;2

    Article  Google Scholar 

  • Vernes K, Blois S, Bärlocher F (2004) Seasonal and yearly changes in consumption of hypogeous fungi by northern flying squirrels and red squirrels in old-growth forest, New Brunswick. Can J Zool 82:110–117. doi:10.1139/z03-224

    Article  Google Scholar 

  • Villares A, García-Lafuente A, Guillamón E, Ramos Á (2012) Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. J Food Compos Anal 26(1):177–182. doi:10.1016/j.jfca.2011.12.003

    Article  CAS  Google Scholar 

  • Wallace AR (1894) The palæarctic and nearctic regions compared as regards the families and genera of their mammalia and birds. Nat Sci 4:435–445

    Google Scholar 

  • Wallis IR, Claridge AW, Trappe JM (2012) Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biol 116(5):590–602. doi:10.1016/j.funbio.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JO, Maser C (1976) Food habits of five western Oregon shrews. Northwest Sci 50(2):102–107

    Google Scholar 

  • Zabel CJ, Waters JR (1997) Food preferences of captive northern flying squirrels from the Lassen National Forest in northeastern California. Northwest Sci 71(2):103–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Urban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urban, A. (2016). Truffles and Small Mammals. In: Zambonelli, A., Iotti, M., Murat, C. (eds) True Truffle (Tuber spp.) in the World. Soil Biology, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-31436-5_21

Download citation

Publish with us

Policies and ethics