Skip to main content

Influence of Climate on Natural Distribution of Tuber Species and Truffle Production

  • Chapter
  • First Online:
True Truffle (Tuber spp.) in the World

Part of the book series: Soil Biology ((SOILBIOL,volume 47))

Abstract

In this chapter, the past migrations of the genus Tuber are first analysed. Then the current natural distribution of the main commercialised species related to current climatic characteristics is described. Very little data exists concerning the relationship between ascoma production and climatic conditions in natural forests or plantations. An analysis of two French Tuber melanosporum wholesale markets from 1988–1989 to 2012–2013 revealed that the main factor explaining the annual variations was the cumulative late spring and summer water balance. The second factor explaining sales variations in one of the wholesale market was the number of freezing days with minimum temperatures equal to or less than −5 °C. Simulation of the sales from 1965 to 1966 showed that potential truffle sales would have been stable in France these past 48 years despite a degradation of the summer water balance, compensated in part by reducing the number of freezing days. For the twenty-first century, almost all scenarios in Europe predict a trend towards warming, ranging from 2° to 4 °C, and decreased rainfall in the Mediterranean region. In plantations, it would be necessary to implement all techniques that allow for improved summer water balance (irrigation, mulching, soil tilling, host pruning). A challenge for the next decades to come will be to provide truffle growers with best practice management guidelines based on established water balance models of truffle orchards. Another possible way to counteract global warming could be to move the truffle plantations further north or to higher altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167(3):859–868. doi:10.1111/j.1469-8137.2005.01458.x

    Article  CAS  PubMed  Google Scholar 

  • Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (1992) Terrestrial ecosystems through time. Evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago

    Google Scholar 

  • Belfiori B, Riccioni C, Paolocci F, Rubini A (2013) Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the T. indicum species complex. PLoS One 8(12):e82353. doi:10.1371/journal.pone.0082353

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertault G, Raymond M, Berthomieu A, Callot G, Fernandez D (1998) Trifling variation in truffles. Nature 394(6695):734. doi:10.1038/29428

    Article  CAS  Google Scholar 

  • Bonet JA, Fischer CR, Colinas C (2004) The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forests of the central Pyrenées. For Ecol Manage 203(1–3):157–175. doi:10.1016/j.foreco.2004.07.063

    Article  Google Scholar 

  • Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DA, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8(1):e52765. doi:10.1371/journal.pone.0052765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büntgen U, Tregel W, Egli S, Stobbe U, Sproll L, Stenseth NC (2011) Truffles and climate change. Front Ecol Environ 9(3):150–151. doi:10.1890/11.WB.004

    Article  Google Scholar 

  • Büntgen U, Egli S, Camarero JJ, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012a) Drought-induced decline in Mediterranean truffle harvest. Nat Clim Change 2(12):827–829. doi:10.1038/nclimate1733

    Article  Google Scholar 

  • Büntgen U, Kauserud H, Egli S (2012b) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ 10(1):14–19. doi:10.1890/110064

    Article  Google Scholar 

  • Ceruti A, Fontana A, Nosenzo C (2003) Le specie europee del genere Tuber: Una revisione storica. Museo Regionale di Scienze Naturali, Regione Piemonte, Torino

    Google Scholar 

  • Chen J, Liu PG, Wang Y (2005) Notes on Tuber aestivum Vittad (Tuberaceae, Ascomycota) from China. Acta Bot Yunnanica 27(4):385–389

    CAS  Google Scholar 

  • Chen J, Guo SX, Liu PG (2011) Species recognition and cryptic species in the Tuber indicum complex. PLoS One 6(1):e14625. doi:10.1371/journal.pone.0014625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier G, Wehrlen L (2008) Quelques principes de lutte intégrée contre le réchauffement climatique en trufficulture. In: Rousset-Rouard Y, Savignac JC (eds) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger ? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris, pp 48–62

    Google Scholar 

  • Cooke MC, Massee G (1892) Himalayan truffles. Grevillea 20:67

    Google Scholar 

  • Fekete AO, Bagi I, Conde IP, Iotti M, Zambonelli A (2014) First report on the truffles of Azerbaijan. In: Résumés du deuxième symposium sur les champignons hypogés du bassin mediterranéen (HYPOGES2) et cinquième congrès Tuber aestivum/uncinatum du groupe scientifique européen (TAUESG5), Université Mohammed V, Rabat, 9–13 Apr 2014, p 19

    Google Scholar 

  • Frannson PMA, Anderson IC, Alexander IJ (2007) Does carbon partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with fungal species? Plant Soil 291(1–2):323–333. doi:10.1007/s11104-007-9203-y

    Article  Google Scholar 

  • Genola L (2008) Peut-on envisager une trufficulture performante face aux nouvelles contraintes climatiques? In: Rousset-Rouard Y, Savignac JC (eds) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris, pp 86–97

    Google Scholar 

  • Geoffroy CJ (1711) Observations sur la végétation des Truffes. In: Mémoires de l’Académie royale des Sciences, Memoires de mathématique et de physique, pp 29–44

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2–3):90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giovanetti G, Fontana A (1982) Mycorrhizal synthesis between Cistaceae and Tuberaceae. New Phytol 92(4):533–537. doi:10.1111/j.1469-8137.1982.tb03412.x

    Article  Google Scholar 

  • Gregori GN (2008) Trufficulture en Italie: experiences, problèmes et évolutions possibles. In: Rousset-Rouard Y, Savignac JC (eds) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris, pp 65–76

    Google Scholar 

  • Guérin-Laguette A, Renowden G (2008) Réchauffement climatique et trufficulture en Nouvelle-Zélande. In: Rousset-Rouard Y, Savignac JC (eds) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris, pp 113–116

    Google Scholar 

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle. The history, Lore, and Science of the ultimate mushroom. Timber Press, Portland

    Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18(6):703–707. doi:10.1111/j.1365-3040.1995.tb00572.x

    Article  Google Scholar 

  • Jeandroz S, Murat C, Wang Y, Bonfante P, Le Tacon F (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35(5):815–829. doi:10.1111/j.1365-2699.2007.01851.x

    Article  Google Scholar 

  • Kauserud H, Heegaard E, Büntgen U, Halvorsen R, Egli S, Senn-Irlet B, Krisai-Greilhuber I, Dämon W, Sparks T, Nordén J, Høilanda K, Kirk P, Semenov M, Boddy L, Stenseth NC (2012) Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci USA 109(36):14488–14493. doi:10.1073/pnas.1200789109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Sasaki H, Nara K (2011) Phylogeny and diversity of Japanese truffles (Tuber spp.) inferred from sequences of four nuclear loci. Mycologia 103(4):779–794. doi:10.3852/10-138

    Article  PubMed  Google Scholar 

  • Krebs CJ, Carrier P, Boutin S, Boonstra R, Hofer E (2008) Mushroom crops in relation to weather in the southwestern Yukon. Botany 86(12):1497–1502. doi:10.1139/B08-094

    Article  Google Scholar 

  • Le Tacon F, Delmas J, Gleyze R, Bouchard D (1982) Influence du régime hydrique du sol et la fertilisation sur la fructification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le Sud-Est de la France. Acta Oecol-Oecol Appl 3(4):291–306

    Google Scholar 

  • Le Tacon F, Marçais B, Courvoisier M, Murat C, Montpied P, Becker M (2014) Climatic variations explain annual fluctuations in French ‘Périgord black truffle’ wholesale markets but do not explain the decrease in ‘black truffle’ production over the last 48 years. Mycorrhiza 24(Suppl 1):S115–S125. doi:10.1007/s00572-014-0568-5

    Article  PubMed  Google Scholar 

  • Malajczuk N (2008) Réflexion sur le changement climatique et son impact sur la culture australienne. In: Rousset-Rouard Y, Savignac JC (eds) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris, pp 128–130

    Google Scholar 

  • Morison JML (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ 8(6):467–474. doi:10.1111/j.1365-3040.1985.tb01682.x

    Article  Google Scholar 

  • Murat C, Diez J, Luis P, Delaruelle C, Dupré C, Chevalier G, Bonfante P, Martin F (2004) Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164(2):401–411. doi:10.1111/j.1469-8137.2004.01189.x

    Article  CAS  Google Scholar 

  • Nehls U, Hampp R (2000) Carbon allocation in ectomycorrhizas. Physiol Mol Plant Pathol 57(3):95–100. doi:10.1006/pmpp.2000.0285

    Article  CAS  Google Scholar 

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162(2):81–293. doi:10.1111/j.1469-8137.2004.01047.x

    Article  Google Scholar 

  • O’Dell TE, Ammirati JF, Schreiner EG (1999) Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone. Can J Bot 77(12):1699–1711. doi:10.1139/b99-144

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54(4):877–885. doi:10.2307/25065474

    Article  Google Scholar 

  • Rouhier H, Read DJ (1998) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40(3):237–246. doi:10.1016/S0098-8472(98)00039-2

    Article  Google Scholar 

  • Rousset-Rouard Y (2008) L’avenir de la truffe face au réchauffement climatique: la truffe européenne est-elle en danger? Actes des 2e rencontres internationales de la truffe. Albin Michel, Paris

    Google Scholar 

  • Salerni E, Perini C, Gardin L (2014) Linking climate variables with Tuber borchii sporocarps production. Nat Resour 5(8):408–418. doi:10.4236/nr.2014.58038

    Google Scholar 

  • Splivallo R, Rengenier R, Valdez N, Chevalier G, Molinier V, Wipf D, Karlovsky P (2012) Is climate change altering the geographic distribution of truffles? Front Ecol Environ 10(9):461–462. doi:10.1890/12.WB.020

    Article  Google Scholar 

  • Stobbe U, Egli S, Tegel W, Peter M, Sproll L, Büntgen U (2013) Potential and limitations of Burgundy truffle cultivation. Appl Microbiol Biotechnol 97(12):5215–5224. doi:10.1007/s00253-013-4956-0

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147(1):189–200. doi:10.1046/j.1469-8137.2000.00690.x

    Article  CAS  Google Scholar 

  • Wang YJ, Tan ZM, Zhang DC, Murat C, Jeandroz S, Le Tacon F (2006) Phylogenetic and populational study of the Tuber indicum complex. Mycol Res 110(9):1034–1045. doi:10.1016/j.mycres.2006.06.013

    Article  PubMed  Google Scholar 

  • Weden C, Chevalier G, Danell E (2004) Tuber aestivum (syn. T. uncinatum) biotopes and their history on Gotland, Sweden. Mycol Res 108(3):304–310. doi:10.1017/S0953756204009256

    Article  PubMed  Google Scholar 

  • Zambonelli A, Iotti M, Piattoni F (2012) Chinese Tuber aestivum sensu lato in Europe. Open Mycol J 6:22–26. doi:1874-4370/12

    Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48(6):585–591. doi:10.1016/j.fgb.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang ZL, Song DS (2005) A phylogenetic study of commercial Chinese truffles and their allies: taxonomic implications. FEMS Microbiol Lett 245(1):85–92. doi:10.1016/j.femsle.2005.02.028

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Liu PG, Chen J (2012) Tuber sinoaestivum sp. nov., an edible truffle from southwestern China. Mycotaxon 122(10):73–82. doi:10.5248/122.73

    Google Scholar 

Download references

Acknowledgements

A part of this work was supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” programme (ANR-11-LABX-0002-01, Laboratory of Excellence ARBRE). We would like to thank the anonymous reviewers for their interest in our work and for their comments or suggestions, which allowed us to greatly improve the first version of this chapter. We are thankful to Aimee Orsini for having corrected the English of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Le Tacon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Tacon, F. (2016). Influence of Climate on Natural Distribution of Tuber Species and Truffle Production. In: Zambonelli, A., Iotti, M., Murat, C. (eds) True Truffle (Tuber spp.) in the World. Soil Biology, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-31436-5_10

Download citation

Publish with us

Policies and ethics