Skip to main content

Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

Abstract

A background-independent quantization of Universe near its Big Bang singularity is considered. Several conceptual issues are addressed in Heisenberg picture. (1) The observable spatial-geometry non-covariant characteristics of an empty-space expanding Universe are sampled by (quantized) distances \(Q=Q(t)\) between space-attached observers. (2) In Q(t) one of the Kato’s exceptional-point times \(t=\tau _{(EP)}\) is postulated real-valued. At such an instant the widely accepted “Big Bounce” regularization of the Big Bang singularity gets replaced by the full-fledged quantum degeneracy. Operators \(Q(\tau _{(EP)})\) acquire a non-diagonalizable Jordan-block structure. (3) During our “Eon” (i.e., at all \(t>\tau _{(EP)}\)) the observability status of operators Q(t) is guaranteed by their self-adjoint nature with respect to an ad hoc Hilbert-space metric \(\varTheta (t) \ne I\). (4) In adiabatic approximation the passage of the Universe through its \(t=\tau _{(EP)}\) singularity is interpreted as a quantum phase transition between the preceding and the present Eon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.L. Bennett, D. Larson et al., Astrophys. J. Suppl. Ser. 208 (2013). UNSP 20

    Google Scholar 

  2. V. Mukhanov, Physical Foundations of Cosmology (CUP, Cambridge, 2005)

    Book  MATH  Google Scholar 

  3. C. Rovelli, Quantum Gravity (CUP, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. M. Znojil, Non-self-adjoint operators in quantum physics: ideas, people, and trends, in [21], pp. 7–58

    Google Scholar 

  5. F.J. Dyson, Phys. Rev. 102, 1217 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  6. F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. (NY) 213, 74 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998); C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002); Phys. Rev. Lett. 92, 119902 (2004) (erratum)

    Google Scholar 

  8. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  9. A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010)

    Article  MathSciNet  Google Scholar 

  10. A.V. Smilga, J. Phys. A: Math. Theor. 41, 244026 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Znojil, SIGMA 5, 001 (2009). arXiv:0901.0700

  12. M. Znojil, Phys. Lett. A 379, 2013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Znojil, Phys. Rev. D 78, 085003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Mostafazadeh, private communication

    Google Scholar 

  15. W. Piechocki, APC seminar “Solving the general cosmological singularity problem”. Paris, 15 Nov 2012

    Google Scholar 

  16. P. Malkiewicz, W. Piechocki, Class. Quant. Gravity 27, 225018 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Ashtekar, A. Corichi, P. Singh, Phys. Rev. D 77, 024046 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.H. Stone, Ann. Math. 33, 643 (1932)

    Article  Google Scholar 

  19. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74, 084003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966)

    Book  MATH  Google Scholar 

  21. F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil (eds.), Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects (Wiley, Hoboken, 2015)

    MATH  Google Scholar 

  22. J.-P. Antoine, C. Trapani, “Metric operators, generalized Hermiticity and lattices of Hilbert spaces,,, in [21], pp. 345–402

    Google Scholar 

  23. M. Znojil, SIGMA 4, 001 (2008). arXiv:0710.4432v3

  24. T. Thiemann, Modern Canonical Quantum General Relativity (CUP, Cambridge, 2007)

    Book  MATH  Google Scholar 

  25. M. Znojil, J. Phys. A: Math. Theor. 40, 4863 (2007); M. Znojil, J. Phys. A: Math. Theor. 40, 13131 (2007)

    Google Scholar 

  26. R. Penrose, Found. Phys. 44, 873 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Znojil, J.-D. Wu, Int. J. Theor. Phys. 52, 2152 (2013)

    Article  MathSciNet  Google Scholar 

  28. D.I. Borisov, F. Ruzicka, M. Znojil, Int. J. Theor. Phys. 54, 4293 (2015)

    Article  MathSciNet  Google Scholar 

  29. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Albeverio, S. Kuzhel, “PT-symmetric operators in quantum mechanics: Krein spaces methods”, in [21], pp. 293–344

    Google Scholar 

  31. M. Znojil, H.B. Geyer, Fort. d. Physik—Prog. Phys. 61, 111 (2013)

    Article  ADS  Google Scholar 

  32. M. Znojil, Ann. Phys. (NY) 361, 226 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Znojil .

Editor information

Editors and Affiliations

Appendix: Auxiliary Spaces and \({\mathscr {P}}{\mathscr {T}}\)-Symmetries

Appendix: Auxiliary Spaces and \({\mathscr {P}}{\mathscr {T}}\)-Symmetries

A few years after the publication of review [6], a series of rediscoveries and an enormous growth of popularity of the pattern followed the publication of pioneering letter [29] in which Bender with his student inverted the flowchart. They choose a nice illustrative example to show that the manifestly non-Hermitian F-space Hamiltonian H with real spectrum may be interpreted as a hypothetical input information about the dynamics (cf. also review [8] for more details).

Graphically, the flowchart of \({\mathscr {P}}{\mathscr {T}}\)-symmetric quantum theory is schematically depicted in Fig. 9. For completeness let us add that the Bender’s and Boettcher’s construction was based on the assumption of \({\mathscr {P}}{\mathscr {T}}\)-symmetry \(H {\mathscr {P}}{\mathscr {T}} = {\mathscr {P}}{\mathscr {T}}H\) of their dynamical-input Hamiltonians where the most common phenomenological parity \({\mathscr {P}}\) and time reversal \({\mathscr {T}}\) entered the game. Mostafazadeh (cf. his review [9]) emphasized that their theory may be generalized while working with more general \({\mathscr {T}}\)s (typically, any antilinear operator) and \({\mathscr {P}}\)s (basically, any indefinite, invertible operator).

Fig. 9
figure 9

THS interpretation of \({\mathscr {P}}{\mathscr {T}}\)-symmetric Hamiltonians H

Several mathematical amendments of the theory were developed in the related literature, with the main purpose of making the constructions feasible. Let us only mention here that the useful heuristic role of operator \({\mathscr {P}}\) was successfully transferred to the Krein-space metrics \(\eta \) (cf. [30] for a comprehensive review). In comment [31] we explained that in principle, the role of \({\mathscr {P}}\) could even be transferred to some positive-definite, simplified and redundant auxiliary-Hilbert-space metrics \(\tilde{\mathscr {P}} = \varTheta _A \ne \varTheta _S\). Such a recipe proved encouragingly efficient [32]. Its flowchart may be summarized in the following diagram:

Besides the right-side flow of mapping we see here the auxiliary, unphysical left-side flow where, typically, the non-Dirac metric \(\varTheta _A\) need not carry any physical contents. In some models such an auxiliary metric proved even obtainable in a trivial diagonal-matrix form [28].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Znojil, M. (2016). Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_26

Download citation

Publish with us

Policies and ethics