Skip to main content

Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

Abstract

We study a general class of \(\mathscr {PT}\)-symmetric tridiagonal quantum Hamiltonians with purely imaginary interaction term in the quasi-Hermitian representation. This general Hamiltonian encompasses many previously studied lattice models as special cases. We provide numerical results regarding domains of observability and exceptional points, and discuss the possibility of explicit construction of general metric operators (which in turn determine all the physical Hilbert spaces). The condition of computational simplicity for the metrics motivates the introduction of certain one-parametric special cases, which consequently admit closed-form extrapolation patterns of the low-dimensional results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. 213, 74–101 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 7, 1191–1306 (2010). arXiv:0810.5643 [quant-ph]

    Google Scholar 

  3. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007). arXiv:hep-th/0703096

    Article  ADS  MathSciNet  Google Scholar 

  4. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998). arXiv:physics/9712001

    Google Scholar 

  5. P. Dorey, C. Dunning, R. Tateo, The ODE/IM correspondence. J. Phys. A 40, R205 (2007). arXiv:hep-th/0703066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. Krejcirik, H. Bila, M. Znojil, Closed formula for the metric in the Hilbert space of a PT-symmetric model. J. Phys. A 39, 10143–10153 (2006). arXiv:math-ph/0604055

    Google Scholar 

  7. D. Krejcirik, P. Siegl, J. Zelezny, On the similarity of Sturm-Liouville operators with non-hermitian boundary conditions to selfadjoint and normal operators. Complex Anal. Oper. Theory 8, 255–281 (2014). arXiv:1108.4946 [math.SP]

    Google Scholar 

  8. M. Znojil, Quantum inner-product metrics via the recurrent solution of the Dieudonné equation. J. Phys. A 45, 085302 (2012). arXiv:1201.2263 [math-ph]

    Google Scholar 

  9. M. Znojil, Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian. J. Math. Phys. 50, 122105 (2009). arXiv:0911.0336 [math-ph]

    Google Scholar 

  10. M. Znojil, Cryptohermitian Hamiltonians on Graphs. Int. J. Theor. Phys. 50, 1052–1059 (2011). arXiv:1008.2082 [quant-ph]

    Google Scholar 

  11. M. Znojil, Solvable non-Hermitian discrete square well with closed-form physical inner product. J. Phys. A 47, 435302 (2014). arXiv:1409.3788v1 [quant-ph]

    Google Scholar 

  12. F. Ruzicka, Hilbert space inner products for PT-symmetric Su-Schrieffer-Heeger models. Int. J. Theor. Phys. 54, 4154–4163 (2015). arXiv:1501.04601 [quant-ph]

  13. E.M. Graefe et al., A non-Hermitian PT-symmetric Bose-Hubbard model: eigenvalue rings from unfolding higher-order exceptional points. J. Phys. A 41, 255206 (2008). arXiv:0802.3164 [math-ph]

  14. B. Zhu, R. Lü, S. Chen, Interplay between Fano resonance and PT-symmetry in non-Hermitian discrete systems. Phys. Rev. A 91, 042131 (2015). arXiv:1501.00443 [quant-ph]

  15. B. Zhu, R. Lu, S. Chen, PT-symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials. Phys. Rev. A 89, 062102 (2014). arXiv:1405.5591 [cond-mat.other]

  16. C. Yuce, PT-symmetric Aubry-Andre model. Phys. Lett. A 378, 2024–2028 (2014). arXiv:1402.2749 [quant-ph]

  17. D.I. Borisov, F. Ruzicka, M. Znojil, Multiply degenerate exceptional points and quantum phase transitions. Int. J. Theor. Phys. Online first (2014). arXiv:1412.6634 [quant-ph]

  18. G. Lévai, F. Ruzicka, M. Znojil, Three solvable matrix models of a quantum catastrophe. Int. J. Theor. Phys. 53, 2875–2890 (2014). arXiv:1403.0723 [quant-ph]

    Google Scholar 

  19. M. Znojil, Quantum big bang without fine-tuning in a toy-model. J. Phys. Conf. Ser. 343, 012136 (2012). arXiv:1105.1282 [gr-qc]

    Google Scholar 

  20. T. Kato, in Perturbation Theory for Linear Operators (Springer, Berlin, 1995)

    Google Scholar 

  21. W.D. Heiss, The physics of exceptional points. J. Phys. A 45, 4016 (2012). arXiv:1210.7536 [quant-ph]

  22. M. Znojil, N-site-lattice analogues of V(x) \(=\) ix3. Ann. Phys. 327, 893–913 (2012). arXiv:1111.0484 [math-ph]

  23. M. Znojil, Gegenbauer-solvable quantum chain model. Phys. Rev. A 82, 052113 (2010). arXiv:1011.4803 [quant-ph]

  24. M. Znojil, Cryptohermitian Hamiltonians on graphs. Int. J. Theor. Phys. 50, 1052–1059 (2011). arXiv:1008.2082 [quant-ph]

    Google Scholar 

  25. F. Stampach, P. Stovicek, Special functions and spectrum of Jacobi matrices. Linear Algebra Appl. 464, 38–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Bottcher, B. Silbermann, in Analysis of Toeplitz Operators (Springer, Berlin, 2006)

    Google Scholar 

  27. F. Bagarello et al., in Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects (Wiley, Hoboken, 2015)

    Google Scholar 

  28. M. Znojil, Three-Hilbert-space formulation of quantum mechanics. SIGMA 5, 1 (2009). arXiv:0901.0700 [quant-ph]

  29. M. Znojil, Non-Hermitian Heisenberg representation. Phys. Lett. A 379, 2013–2017 (2015). arXiv:1505.01036 [quant-ph]

    Google Scholar 

  30. A. Mostafazadeh, Pseudo-Hermitian quantum mechanics with unbounded metric operators. Philos. Trans. R. Soc. Lond. A 371, 20050 (2013). arXiv:1203.6241 [math-ph]

  31. F. Bagarello, A. Fring, Non-self-adjoint model of a two-dimensional noncommutative space with an unbound metric. Phys. Rev. A 88, 042119 (2013). arXiv:1310.4775 [quant-ph]

  32. C.M. Bender, S. Kuzhel, Unbounded C-symmetries and their nonuniqueness. J. Phys. A 45, 4005 (2012). arXiv:1207.1176 [quant-ph]

  33. J.-P. Antoine, C. Trapani, Partial inner product spaces, metric operators and generalized hermiticity. J. Phys. A 46, 025204 (2013). arXiv:1210.3163 [math-ph]

    Google Scholar 

  34. B. Simon, in Orthogonal polynomials on the unit circle (Colloquium Publications, 2004)

    Google Scholar 

  35. M. Znojil, An exactly solvable quantum-lattice model with a tunable degree of nonlocality. J. Phys. A 44, 075302 (2011). arXiv:1101.1183 [math-ph]

    Google Scholar 

  36. M. Znojil, Discrete quantum square well of the first kind. Phys. Lett. A 375, 2503–2509 (2011). arXiv:1105.1863 [quant-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Ruzicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruzicka, F. (2016). Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_25

Download citation

Publish with us

Policies and ethics