Skip to main content

The Relationship Between Complex Quantum Hamiltonian Dynamics and Krein Space Quantization

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

  • 1388 Accesses

Abstract

Negative energy states are appeared in the structure of complex Hamiltonian dynamics. These states also play the main role in Krein space quantization to achieve a naturally renormalized theory. Here, we will have an overlook on the role of negative energy states in complex mechanics and Krein space. In a previous work, we have shown that the method of complex mechanics provides us some extra wave functions within complex spacetime. We have supported our method of including negative energy states, by referring to the theory of Krein space quantization that by taking the full set of Dirac solutions is able to remove the infinities of quantum field theory (QFT), naturally. Our main proposal here is that particles and antiparticles should be treated as physical entities with positive energy instead of considering antiparticles with negative energy and the unphysical particle and antiparticle with negative energy should be introduced as the complement of the sets of solutions for Dirac equation. Therefore, we infer that the Krein space method which is supposed as a pure mathematical approach, has root on the strong foundations of Hamilton-Jacobi equations and therefore on classical dynamics and it can successfully explain the reason why the renormalization procedure in QFT works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.S. El Naschie, Int. J. Nonlinear Sci. Simul. 6, 95 (2005)

    Google Scholar 

  2. M.S. El Naschie, Chaos Solitons Fract. 5, 1031 (1995)

    Article  ADS  Google Scholar 

  3. M.S. El Naschie, Chaos Solitons Fract. 5, 1551 (1995)

    Article  ADS  Google Scholar 

  4. M.S. El Naschie, Chaos Solitons Fract. 11, 1149 (2000)

    Article  ADS  Google Scholar 

  5. L. Sigalotti, G. Di, A. Mejias, Int. J. Nonlinear Sci. Numer. Simul. 7, 467 (2006)

    Article  Google Scholar 

  6. J. Czajko, Chaos Solitons Fract. 11, 1983 (2000)

    Article  ADS  Google Scholar 

  7. C.D. Yang, Chaos Solitons Fract. 33, 1073 (2007)

    Article  ADS  Google Scholar 

  8. C.D. Yang, Chaos Solitons Fract. 32, 274 (2007)

    Article  ADS  Google Scholar 

  9. C.D. Yang, Ann. Phys. 319, 444 (2005)

    Article  ADS  Google Scholar 

  10. C.D. Yang, Chaos Solitons Fract. 32, 312 (2007)

    Article  ADS  Google Scholar 

  11. C.D. Yang, Ann. Phys. 319, 399 (2005)

    Article  ADS  Google Scholar 

  12. C.D. Yang, CH. Wei, Chaos Solitons Fract. 33, 118 (2007)

    Google Scholar 

  13. C.D. Yang, Int. J. Nonlinear Sci. Numer. Simul. 8, 397 (2007)

    Article  Google Scholar 

  14. C.D. Yang, Chaos Solitons Fract. 30, 41 (2006)

    Article  ADS  Google Scholar 

  15. C.D. Yang, Chaos Solitons Fract. 38, 316 (2008)

    Article  ADS  Google Scholar 

  16. C.D. Yang, Ann. Phys. 321, 2876 (2006)

    Article  ADS  Google Scholar 

  17. C.M. Bender, Proc. Inst. Math. NAS Ukrine 50(2), 617628 (2004)

    Google Scholar 

  18. F. Payandeh, J. Phys: Conf. Ser. 626, 012053 (2015)

    ADS  Google Scholar 

  19. F. Payandeh, Mod. Phys. Lett. A. 29, 18 (2014)

    Article  MathSciNet  Google Scholar 

  20. I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Nucl. Phys. B 462, 437 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Garidi et al, J. Math. Phys., 49, 032501 (2008); T. Garidi et al, J. Math. Phys., 44, 3838 (2003); S. Behroozi et al, Phys. Rev. D, 74, 124014 (2006)

    Google Scholar 

  22. J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quant. Grav. 17, 1415 (2000), gr-qc/9904023

    Google Scholar 

  23. B. Allen, Phys. Rev. D 32, 3136 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Mintchev, J. Phys. A: Math. Gen. 13, 1841 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.V. Takook, Mod. Phys. Lett A 16, 1691 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.V. Takook, Int. J. Mod. Phys. E 11, 509 (2002). gr-qc/0006019

    Google Scholar 

  27. H.L. Ford, Quantum Field Theory in Curved Spacetime. gr-qc/9707062

    Google Scholar 

  28. S. Rouhani, M.V. Takook, Int. J. Theor. Phys. 48, 2740 (2009)

    Article  MathSciNet  Google Scholar 

  29. F. Payandeh, M. Mehrafarin, S. Rouhani, M.V. Takook, UJP 53, 1203 (2008)

    Google Scholar 

  30. F. Payandeh, M. Mehrafarin, M.V. Takook, AIP Conf. Proc. 957, 249 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Payandeh, Rev. Cub. Fis. 26, 232 (2009)

    Google Scholar 

  32. F. Payandeh, J. Phys: Conf. Ser. 174, 012056 (2009)

    ADS  Google Scholar 

  33. F. Payandeh, M. Mehrafarin, M.V. Takook, Sci. China Ser. G: Phys., Mech. Astron. 52, 212 (2009)

    Article  ADS  Google Scholar 

  34. F. Payandeh, AIP Conf. Proc. 1246, 170 (2010)

    Article  ADS  Google Scholar 

  35. F. Payandeh, J. Phys. Conf. Ser. 306, 012054 (2011)

    Article  ADS  Google Scholar 

  36. F. Payandeh, ISRN High Energy Phys. 2012, 714823 (2012)

    Article  Google Scholar 

  37. F. Payandeh, Z. Gh, Moghaddam, M. Fathi, Fortschr. Phys. 60, 1086 (2012)

    Google Scholar 

  38. M. Dehghani et al., Phys. Rev. D, 77, 064028 (2008); M.V. Takook et al., J. Math. Phys. 51, 032503 (2010)

    Google Scholar 

  39. B. Forghan, M.V. Takook, A. Zarei, Krein regularization of QED. Ann. Phys. 327, 2388 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. A. Refaei, M.V. Takook, Phys. Lett. B 704, 326 (2011)

    Article  ADS  Google Scholar 

  41. A. Refaei, M.V. Takook, Mod. Phys. Lett. A 26, 31 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Pejhan, M.R. Tanhayi, M.V. Takook, Ann. Phys. 341, 195 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. N.H. Barth, S.M. Christensen, Phys. Rev. D 28, 1876 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Horva, Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Kaku, Quantum Field Theory, A Modern Introduction (Oxford University Press, Oxford, 1993)

    Google Scholar 

  46. E. Peskin, D.V. Schroeder, An Introduction in Quantum Field Theory (Perseus Books, 1995)

    Google Scholar 

  47. F. Payandeh, J. Phys: Conf. Ser. 306, 012054 (2011)

    ADS  Google Scholar 

  48. A. Zarei, M.V. Takook, B. Forghan, INT. J. Theor. Phys. 50, 2460 (2011)

    Article  MathSciNet  Google Scholar 

  49. O. Klein, Z. Phys. 53, 157 (1929)

    Article  ADS  Google Scholar 

  50. F. Payandeh, T. Mohammad Pur, M. Fathi, Z.Gh. Moghaddam, Chin. Phys. C 37, 113103 (2013)

    Google Scholar 

  51. N.I. Guang-jiong, H. Guan. arXiv:quant-ph/9901046v1

  52. M.O. Scully, H. Walther, Phys. Rev. A 49, 3 (1994)

    Article  MathSciNet  Google Scholar 

  53. T. Calarco, M. Cini, R. Onofrio, EPL 47, 407 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  54. P.A.M. Dirac, Bakerian lecture Proc. Roy. Soc. Lond. A 180, 1 (1942)

    Article  ADS  MathSciNet  Google Scholar 

  55. P.A.M. Dirac, Nobel lecture, Dec 12 (1933)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the organizers of PHHQP15, specially, Prof. Fabio Bagarello.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrin Payandeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Payandeh, F. (2016). The Relationship Between Complex Quantum Hamiltonian Dynamics and Krein Space Quantization. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_23

Download citation

Publish with us

Policies and ethics