Skip to main content

Physical Aspect of Exceptional Point in the Liouvillian Dynamics for a Quantum Lorentz Gas

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

  • 1422 Accesses

Abstract

Physical aspect of the exceptional point in the spectrum of the Liouville-von Neumann operator (Liouvillian) is discussed. The example we study in this paper is the weakly-coupled one-dimensional quantum perfect Lorentz gas. The effective Liouvillian for the system derived by applying the Brillouin-Wigner-Feshbach formalism takes non-Hermitian form due to resonance singularity, thus its spectra take complex values. We find that the complex spectra has two second order exceptional points in the wavenumber space. As a physical effect of the exceptional points, we show that the time evolution of the Wigner distribution function is described by the telegraph equation. The time evolution described by the telegraph equation shows a shifting motion in space. We also show that mechanism of the shifting motion completely changes at the exceptional points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Hatano, Fortschr. Phys. 61, 238 (2013)

    Article  MathSciNet  Google Scholar 

  2. S. Garmon, I. Rotter, N. Hatano, D. Segal, Int. J. Theor. Phys. 51, 3536 (2012)

    Article  MathSciNet  Google Scholar 

  3. G. Bhamathi, E.C.G. Sudarshan, Int. J. Mod. Phys. B 10, 1531 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Klaiman, U. Gunther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.D. Valle, S. Longhi, Phys. Rev. A 87, 022119 (2013)

    Article  ADS  Google Scholar 

  6. O. Vázquez-Candanedo et al., Phys. Rev. A 89, 013832 (2014)

    Google Scholar 

  7. B. Peng et al., Nat. Phys. 10, 394 (2014)

    Article  Google Scholar 

  8. I. Prigigne, Non-equilibrium statistical mechanics (Wiley, 1962)

    Google Scholar 

  9. T. Petrosky, I. Prigogine, Adv. Chem. Phys. 99, 1 (1997)

    MathSciNet  Google Scholar 

  10. T. Kato, Perturbation Theory of Linear Operators (Springer, Berlin, 1966)

    Book  MATH  Google Scholar 

  11. W.D. Heiss, Eur. Phys. J. D 60, 257 (2010)

    Article  ADS  Google Scholar 

  12. J. Wiersig, S.W. Kim, M. Hentschel, Phys. Rev. A 78, 53809 (2008)

    Article  ADS  Google Scholar 

  13. B. Dietz et al., Phys. Rev. E 75, 027201 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Hashimoto et al., Prog. Theor. Exp. Phys. 2015, 023A02 (2015)

    Google Scholar 

  15. Z.L. Zhang, Irreversibility and extended formulation of classical and quantum nonintegrable dynamics, Ph.D. Thesis, The University of Texas at Austin, 1995

    Google Scholar 

  16. Y. Sato, K. Kanki, S. Tanaka, T. Petrosky, unpublished

    Google Scholar 

  17. R. Balescu, Statistical Mechanics of Charged Particles, (Wiley, 1963)

    Google Scholar 

  18. T. Petrosky, Prog. Theor. Phys. 123, 395 (2010)

    Article  ADS  Google Scholar 

  19. R. Esposito, M. Pulvirenti, A. Teta, Commun. Math. Phys. 204, 619 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.V. Berry, Czech. J. Phys. 57, 1039 (2004)

    Article  ADS  Google Scholar 

  21. W.D. Heiss, W.H. Steeb, J. Math. Phys. 32, 3003 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  22. W.D. Heiss, Eur. Phys. J. D 7, 1 (1999)

    Article  ADS  Google Scholar 

  23. K. Hashimoto, K. Kanki, S. Tanaka, T. Petrosky, arXiv:1507.02038

  24. W.D. Heiss, A.L. Sannino, J. Phys. A: Math. Gen. 23, 1167 (1990)

    Article  ADS  Google Scholar 

  25. W.D. Heiss, J. Phys. A: Math. Gen. 37, 2455 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Cartarius, J. Main, G. Wunner, Phys. Rev. Lett. 99, 173003 (2007)

    Article  ADS  Google Scholar 

  27. J. Rubinstein, P. Sternberg, Q. Ma, Phys. Rev. Lett. 99, 167003 (2007)

    Article  ADS  Google Scholar 

  28. W.D. Heiss, J. Phys. A: Math. Theor. 41, 244010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Lefebvre, O. Atabek, M. Sindelka, N. Moiseyev, Phys. Rev. Lett. 103, 123003 (2009)

    Article  ADS  Google Scholar 

  30. H. Cartarius, N. Moiseyev, Phys. Rev. A 84, 013419 (2011)

    Article  ADS  Google Scholar 

  31. G. Demange, E. Graefe, J. Phys. A: Math. Theor. 45, 025303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. I. Gilary, A.A. Mailybaev, N. Moiseyev, Phys. Rev. A 88, 010102 (2013)

    Article  ADS  Google Scholar 

  33. C. Dembowski et al., Phys. Rev. Lett. 86, 787 (2001)

    Article  ADS  Google Scholar 

  34. C. Dembowski et al., Phys. Rev. Lett. 90, 034101 (2003)

    Article  ADS  Google Scholar 

  35. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Phys. Rev. A 84, 040101 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hashimoto, K., Kanki, K., Tanaka, S., Petrosky, T. (2016). Physical Aspect of Exceptional Point in the Liouvillian Dynamics for a Quantum Lorentz Gas. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_17

Download citation

Publish with us

Policies and ethics