Skip to main content

Abstract

Ribosome profiling (also called Ribo-Seq) is a relatively new method for studying translational regulation of biological processes. Based on the assumption that ribosomes bound to mRNA molecules are all actively decoding the nucleotide sequence to produce polypeptides, ribosome profiling uses next-generation sequencing of mRNA fragments protected by the translating ribosome to determine translational efficiency. It has been, among others, used to study miRNA regulation mechanisms, open reading frames and differential translation of specific genes. Although the method is already 6 years old, it is still in the development phase, and although a detailed protocol has been published, individual wet lab and computational analysis steps are still being optimized. In the following pages, we present different applications of ribosome profiling and the current state-of-the-art experiment guidelines, with special attention put to alternative protocols and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert FW, Muzzey D, Weissman JS, Kruglyak L (2014) Genetic influences on translation in yeast. PLoS Genet 10:e1004692

    Article  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D (2014) KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 10:e1003847

    Article  PubMed  PubMed Central  Google Scholar 

  • Artieri CG, Fraser HB (2014) Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res 24:2011–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MA, Brocard M, Couso JP (2014) Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. eLife 3:e03528

    Article  PubMed  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudin-Bailleau A, Legendre R, Kuchly C, Hatin I, Demais S, Mestdagh C, Gautheret D, Namy O (2014) Genome-wide translational changes induced by the prion [PSI+]. Cell Rep 8:439–448

    Article  Google Scholar 

  • Bazzini AA, Lee M, Giraldez A (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzini AA, Johnstone TG, Christiano R, Mackwiak SD, Obermayer B, Fleming ES, Vejnar CE, Lee MT, Rajewski N, Walther TC, Giraldez AJ (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker AH, Oh E, Weissman JS, Kramer G, Bukau B (2013) Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nat Protoc 8:2212–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    Article  CAS  PubMed  Google Scholar 

  • Caro F, Ahyong V, Betegon M, DeRisi JL (2014) Genome-wide regulatory dynamics of translation in the Plasmodium Falciparum asexual blood stages. eLife 3:e04106

    Article  Google Scholar 

  • Charneski CA, Hurst LD (2013) Positively charged residues are the major determinants of ribosome velocity. PLoS Biol 11:e1001508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew GL, Pauli A, Rinn JL, Regev A, Schier AF, Valen E (2013) Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140:2828–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dana A, Tuller T (2012) Determinants of translational elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLoS Comput Biol 8:e10022755

    Article  Google Scholar 

  • Dana A, Tuller T (2014) The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res 42:9171–9181

    Google Scholar 

  • Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2:e221

    Google Scholar 

  • Duncan CDS, Mata J (2014) The translational landscape of fission-yeast meiosis and sporulation. Nat Struct Mol Biol 21:641–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2:e01179

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardin J, Yeasmin R, Yurovsky A, Cai Y, Skiena S, Futcher B (2014) Measurement of average decoding rates of the 61 sense codons in vivo. eLife 3:e03735

    Article  Google Scholar 

  • Gerashchenko MV, Gladyshev VN (2014) Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res 42:e134

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerashchenko MV, Lobanov AV, Gladyshev VN (2012) Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci U S A 109:17394–17399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft RJF, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R (2014) Correcting direct effects of ethanol translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 111:E2576–E2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardcastle TJ (2014). riboSeqR: analysis of sequencing data from ribosome profiling experiments. R package version 1.2.0

    Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 1135:738–748

    Article  Google Scholar 

  • Howard MT, Carlson BA, Anderson CB, Hatfield DL (2013) Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem 288:19401–19413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JC, Sherlock G, Siegele DA, Aleksander SA, Ball CA, Demeter J, Gouni S, Holland TA, Karp PD, Lewis JE, Liles NM, McIntosh BK, Mi H, Muruganujan A, Wymore F, Thomas PD (2014) PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools. Nucleic Acids Res 42:D677–D684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia N, Lareau L, Weissman J (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT, Brar G, Stern-Ginossar N, Harris NS, Talhouarne GJS, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8:1365–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:1257521

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen BC, Ramasamy G, Vasconcelos EJR, Ingolia NT, Myler PJ, Parsons M (2014) Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15:911

    Article  PubMed  PubMed Central  Google Scholar 

  • Juntawong P, Girke T, Bazin J, Bailey-Serres J (2013) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111:E203–E212

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannan K, Kanabar P, Schryer D, Florin T, Oh E, Bahroos N, Tenson T, Weissman JS, Mankin AS (2014) The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci U S A 111:15958–15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Gawron D, Steyaert S, Ndah E, Crappe J, De Keunlenaer S, De Meester E, Ma M, Shen B, Gevaert K, Van Criekinge W, Van Damme P, Menschaert G (2013) A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translational start sites. Proteomics 14:2688–2698

    Article  Google Scholar 

  • Labunsky VM, Gerashchenko MV, Delaney JR, Kaya A, Kennedy BK, Kaeberlein M, Gladyshev VN (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet 10:e1004019

    Article  Google Scholar 

  • Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3:e01257

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson O, Sonenberg N, Nadon R (2011) Anota: analysis of differential translation in genome-wide studies. Bioinformatics 27:1440–1441

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A 109:E2424–E2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (2013) Nanog, Pou51 and SoxB+ activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GW, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GW, Burkhardt D, Gross C, Weissman JS (2014a) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Labaj PP, Zumbo P, Sykacek P, Shi W, Shi L, Phan J, Wu PY, Wang M, Wang C, Thierry-Mieg D, Thierry-Mieg J, Kreil DP, Mason CE (2014b) Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat Biotechnol 32:888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH (2013a) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25:3699–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiang H, Gu Z, Roberts JW (2013b) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Han Y, Qian SB (2013c) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49:1–11

    Article  Google Scholar 

  • Loayza-Puch F, Drost J, Rooijers K, Lopes R, Elkon R, Agami R (2013) P53 induces transcriptional and translational programs to suppress cell proliferation and growth. Genome Biol 14:R32

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus CJ, May GE, Spealman P, Shteyman A (2014) Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res 24:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menschaert G, Van Criekinge W, Notelaers T, Koch A, Crappe J, Gevaert K, Van Damme P (2013) Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol Cell Proteomics 12:1780–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel AM, Choudhury KR, Firth AE, Ingolia NT, Atkins JF, Baranov PV (2012) Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res 22:2219–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel AM, Fox G, Kiran AM, De Bo C, O’Connor PBF, Heaphy SM, Mullan JPA, Donohue CA, Higgins DG, Baranov PV (2013) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Muzzey D, Sherlock G, Weissman JS (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res 24:963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahigashi K, Takai Y, Shiwa Y, Wada M, Honma M, Yoshikawa H, Tomita M, Kanai A, Mori H (2014) Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo. BMC Genomics 15:1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A, Gross CA, Kramer G, Weissman JS, Bukaun B (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olshen AB, Hsieh AC, Stumpf CR, Olshen RA, Ruggero D, Taylor BS (2013) Assessing gene-level translational control from ribosome profiling. Bioinformatics 29:2995–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS, Koller D (2014) Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol 10:770

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid DW, Nicchitta CV (2012) Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooijers K, Loayza-Puch F, Nijtmans LG, Agami R (2013) Ribosome profiling reveals features of normal and disease-associated mitochondrial translation. Nat Commun 4:2886

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio CA, Weisburd B, Holderfield M, Arias C, Fang E, DeRisi JL, Fanidi A (2014) Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol 15:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader JM, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS, Shapiro L (2014) The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 10:e1004463

    Article  PubMed  PubMed Central  Google Scholar 

  • SEQC/MAQC-III Consortium (2014) A comprehensive assessment of RNA-Seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32:903–914

    Article  Google Scholar 

  • Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB (2013) Rate-limiting steps in yeast protein translation. Cell 153:1589–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB (2013) Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49:439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A 111:e5593–e5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JE, Alvarez-Dominguez JR, Kline N, Huynh NJ, Geisler S, Hu W, Coller J, Baker KE (2014) Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep 7:1858–1866

    Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Google Scholar 

  • Stadler M, Fire A (2011) Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17:2063–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler M, Fire A (2013) Conserved translatome remodelling in nematode species executing a shared developmental transition. PLoS Genet 9:e1003739

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler M, Artiles K, Pak J, Fire A (2012) Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. Elegans heterochronic miRNA targets. Genome Res 22:2418–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpf CR, Moreno MV, Olshen AB, Taylor BS, Ruggero D (2013) The translational landscape of the mammalian cell cycle. Mol Cell 52:1–9

    Article  Google Scholar 

  • Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderperre B, Lucier JF, Roucou X (2012). HAltORF: a database of predicted out-of-frame alternative open reading frames in human. Database 2012:bas025.

    Google Scholar 

  • Vanderperre B, Lucier JF, Bissonnette C, Motard J, Tremblay G, Vanderperre S, Wisztorski M, Salzet M, Boisvert FM, Roucou X (2013) Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One 8:e70698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN (2014) Nucleic Acids Res 42:3623–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Abreu R, Ko D, Le S-Y, Shapiro B, Burns S, Sandhu D, Boutz D, Marcotte E, Penalva L (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan J, Qian SB (2014) TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res 42:845–850

    Article  Google Scholar 

  • Wang J, Garrey J, Davis RE (2014) Transcription in Pronuclei and One- to Four-Cell Embryos Drives Early Development in a Nematode. Curr Biol 24:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiita AP, Ziv E, Wiita PJ, Urisman A, Julien O, Burlingame AL, Weissman JS, Wells JA (2013) Global cellular response to chemotherapy-induced apoptosis. eLife 2:e01236

    PubMed  PubMed Central  Google Scholar 

  • Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip KY, Cheng C, Gerstein M (2013) Machine learning and genome annotation: a match meant to be? Genome Biol 14:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupanic A, Meplan C, Grellscheid SN, Mathers JC, Krikwood TB, Hesketh JE, Shanley DP (2014) Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Julie Aspden for critically reviewing the manuscripts and suggesting several improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anze Zupanic Ph.D. .

Editor information

Editors and Affiliations

Annex: Quick Reference Guide

Annex: Quick Reference Guide

Fig. QG8.1
figure a

Representation of the wet lab procedure workflow

Fig. QG8.2
figure b

Main steps of the computational analysis pipeline

Table QG8.1 Experimental design considerations
Table QG8.2 Available software recommendations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zupanic, A., Grellscheid, S.N. (2016). Ribosome Profiling. In: Aransay, A., Lavín Trueba, J. (eds) Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing. Springer, Cham. https://doi.org/10.1007/978-3-319-31350-4_8

Download citation

Publish with us

Policies and ethics