Skip to main content

Non-androgen Signaling Pathways in Castration-Resistant Prostate Cancer

  • Chapter
  • First Online:
Managing Metastatic Prostate Cancer In Your Urological Oncology Practice

Abstract

Prostate cancer (PCa), while initially androgen-sensitive, the lethal form of the disease inevitably progresses to hormone refractory or castration-resistant state and accounts for vast majority of mortality among PCa patients. During the transition from the hormone naïve disease into CRPC, the progression of PCa cells can be driven by alternative (non-androgen) signaling pathways. Upregulation of ligands, receptors and intracellular signaling molecules along with activating mutations of proto-oncogenes and/or suppression of tumor suppressor genes are the major causes of the deregulation of these alternative pathways. In addition, loss of negative feedback mechanism of the signal cascades further amplifies the effects of the pathways and thus contributing to the emergence of CRPC. This chapter covers studies investigating the potential involvement of non-androgen signaling pathways in PCa and the current strategies employed in PCa cell lines, animal models and clinical trials for controlling these aberrant signaling pathways. The understanding of non-androgen signaling pathway target(s) in CRPC could provide novel biomarkers and newer strategies in management of metastatic PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADT:

Androgen deprivation therapy

Akt:

AKR mouse strain thymoma

AR:

Androgen receptor

BAD:

Bcl-2 associated death promoter

Bcl-2:

B-cell lymphoma-2

BRCA1:

Breast cancer susceptibility type 1

Ca2+ :

Calcium++

CAMs:

Cell-surface adhesion molecules

CaMK:

Ca2+/calmodulin-dependent protein kinase

cAMP:

cyclic Adenosine Mono-Phosphate

CRPC:

Castration-resistant prostate cancer

Dhh:

Desert hedgehog

DKKs:

Dickkopf family members

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

EGF receptor

EMT:

Epithelial-mesenchymal transition

ET-1:

Endothelin 1

ET1AR:

ET-1A receptor

FISH:

Fluorescence in situ hybridization

FGF:

Fibroblast growth factor

FGFRs:

FGF receptors

FSH:

Follicle stimulating hormone

GF:

Growth factor

GFRs:

GF receptors

gp130:

Glycoprotein 130

GPCR:

G-protein coupled receptor

HER2:

Human EGF receptor 2

Hh:

Hedgehog

HSP 27:

Heat shock protein 27

IGF:

Insulin-like growth factor

IGF-IR:

IGF-I receptor

IGFBPs:

IGF binding proteins

Ihh:

Indian hedgehog

ILs:

Interleukins

IP3 :

Inositol triphosphate

IWPs:

Inhibitors of Wnt productions

IWRs:

Inhibitor of Wnt responses

JAK:

Janus kinase

JNK:

c-Jun N-terminal Kinase

LPA:

Lysophosphatidic acid

LRP5/6:

Lipoprotein receptor–related proteins 5 and 6

MAPK:

Mitogen-activated protein kinase

Mcl-1:

Myeloid cell leukemia 1

mCRPC:

Metastatic CRPC

MEK:

MAPK/ERK kinase

MMPs:

Matrix metalloproteinases

mRNA:

Messenger ribonucleic acid

mTOR:

Mammalian target of rapamycin or mechanistic target of rapamycin

NSAIDs:

Non-steroidal anti-inflammatory drugs

NSE:

Neuron-specific enolase

p42ERK:

p42 (42 kDa) extracellular-signal-regulated kinase

p70S6K :

p70 (70 kDa) S6 ribosomal kinase

PCa:

Prostate cancer

PGE2:

Prostaglandin E2

PI3K:

Phosphoinositide 3-kinase

PIN:

Prostatic intraepithelial neoplasia

PIP2 :

phosphatidylinositol (4,5) bisphosphate

PIP3 :

phosphatidylinositol (3,4,5) trisphosphate

PKD1:

Protein kinase D1

PLC:

Phospolipase C

PSA:

Prostate-specific antigen

PTEN:

Phosphatase and tensin homologue deleted on chromosome ten

Ptch:

Human pathced

Raf:

Rapidly accelerated fibrosarcoma

Ras:

Rat sarcoma

RGD:

Arginine (R)-Glycine (G)-Aspartate (D) sequence

RIN:

Ras-like protein in neurons

RKIP:

Raf kinase inhibitor protein

RTK:

Receptor tyrosine kinase

Shh:

Sonic hedgehog

SMAD:

Sma (small)/Mad (Mothers against decapentaplegic) homology

Smo:

Patched of smoothened

SFRP:

Secreted frizzled-related protein family

STAT:

Signal transducer and activator of transcription

TGFβ:

Transforming growth factor-β

TβRII:

TGFβ receptor-II

TRAMP:

Transgenic adenocarcinoma of mouse prostate

VEGF:

Vascular endothelial growth factor

WIF1:

Wnt inhibitory factor 1

Wnt:

Wingless gene (Wg) homolog of int-1 (integration-1) or Wingless-related integration site

References

  1. Culig Z, Klocker H, Bartsch G, Hobisch A. Androgen receptors in prostate cancer. Endocr Relat Cancer. 2002;9:155–70.

    Article  CAS  PubMed  Google Scholar 

  2. Culig Z, Klocker H, Bartsch G, Hobisch A. Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am J Pharmacogenomics. 2001;1:241–9.

    Article  CAS  PubMed  Google Scholar 

  3. Eder IE, et al. Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur Urol. 2001;40:241–51.

    Article  CAS  PubMed  Google Scholar 

  4. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin. 1972;22:232–40.

    Article  CAS  PubMed  Google Scholar 

  5. Wang D, Tindall DJ. Androgen action during prostate carcinogenesis. Methods Mol Biol. 2011;776:25–44.

    Article  CAS  PubMed  Google Scholar 

  6. Green SM, Mostaghel EA, Nelson PS. Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol. 2012;360:3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferraldeschi R, Pezaro C, Karavasilis V, de Bono J. Abiraterone and novel antiandrogens: overcoming castration resistance in prostate cancer. Annu Rev Med. 2013;64:1–13.

    Article  CAS  PubMed  Google Scholar 

  8. Mohler JL, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10:440–8.

    Article  CAS  PubMed  Google Scholar 

  9. Attard G, Cooper CS, de Bono JS. Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell. 2009;16:458–62.

    Article  CAS  PubMed  Google Scholar 

  10. Toren PJ, Gleave ME. Novel non-AR therapeutic targets in castrate resistant prostate cancer. Transl Androl Urol. 2013;2(3):265–77 (Ref Type: Journal (Full)).

    PubMed  PubMed Central  Google Scholar 

  11. Toren PJ, Gleave ME. Evolving landscape and novel treatments in metastatic castrate-resistant prostate cancer. Asian J Androl. 2013;15:342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCubrey JA, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.

    Article  CAS  PubMed  Google Scholar 

  14. da Silva HB, et al. Dissecting major signaling pathways throughout the development of prostate cancer. Prostate Cancer. 2013;2013:920612.

    Article  PubMed  PubMed Central  Google Scholar 

  15. McCubrey JA, et al. Roles of the RAF/MEK/ERK and PI3 K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46:249–79.

    Article  CAS  PubMed  Google Scholar 

  16. Carlsson J, Shen L, Xiang J, Xu J, Wei Q. Tendencies for higher co-expression of EGFR and HER2 and downregulation of HER3 in prostate cancer lymph node metastases compared with corresponding primary tumors. Oncol Lett. 2013;5:208–14.

    PubMed  PubMed Central  Google Scholar 

  17. Culig Z, Hobisch A, Bartsch G, Klocker H. Androgen receptor–an update of mechanisms of action in prostate cancer. Urol Res. 2000;28:211–9.

    Article  CAS  PubMed  Google Scholar 

  18. Culig Z, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54:5474–8.

    CAS  PubMed  Google Scholar 

  19. Taylor BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carter BS, Epstein JI, Isaacs WB. Ras gene mutations in human prostate cancer. Cancer Res. 1990;50:6830–2.

    CAS  PubMed  Google Scholar 

  21. Voeller HJ, Wilding G, Gelmann EP. v-rasH expression confers hormone-independent in vitro growth to LNCaP prostate carcinoma cells. Mol Endocrinol. 1991;5:209–16.

    Article  CAS  PubMed  Google Scholar 

  22. Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ. Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res. 2003;63:1981–9.

    CAS  PubMed  Google Scholar 

  23. Mukherjee R, Bartlett JM, Krishna NS, Underwood MA, Edwards J. Raf-1 expression may influence progression to androgen insensitive prostate cancer. Prostate. 2005;64:101–7.

    Article  CAS  PubMed  Google Scholar 

  24. Fu Z, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate. 2006;66:248–56.

    Article  CAS  PubMed  Google Scholar 

  25. Keller ET. Role of Raf kinase inhibitor protein in pathophysiology of prostate cancer. For Immunopathol Dis Therap. 2011;2:89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stoehr R, et al. No evidence for mutation of B-RAF in urothelial carcinomas of the bladder and upper urinary tract. Oncol Rep. 2004;11:137–41.

    CAS  PubMed  Google Scholar 

  27. WhangYE, et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA. 1998;95:5246–50.

    Article  Google Scholar 

  28. Pourmand G, et al. Role of PTEN gene in progression of prostate cancer. Urol J. 2007;4:95–100.

    PubMed  Google Scholar 

  29. Li J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.

    Article  CAS  PubMed  Google Scholar 

  30. Steck PA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15:356–62.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimoto M, et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68 % of primary prostate cancer and 23 % of high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet. 2006;169:128–37.

    Article  CAS  PubMed  Google Scholar 

  32. Han B, et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol. 2009;22:1083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene. 1998;16:1743–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cairns P, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997;57:4997–5000.

    CAS  PubMed  Google Scholar 

  35. Suzuki H, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998;58:204–9.

    CAS  PubMed  Google Scholar 

  36. Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4:811–5.

    CAS  PubMed  Google Scholar 

  37. McMenamin ME, et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999;59:4291–6.

    CAS  PubMed  Google Scholar 

  38. Verhagen PC, et al. The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. J Pathol. 2006;208:699–707.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshimoto M, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97:678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshimoto M, et al. Absence of TMPRSS2: ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol. 2008;21:1451–60.

    Article  CAS  PubMed  Google Scholar 

  42. Reid AH, et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sircar K, et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol. 2009;218:505–13.

    Article  CAS  PubMed  Google Scholar 

  44. McCall P, Witton CJ, Grimsley S, Nielsen KV, Edwards J. Is PTEN loss associated with clinical outcome measures in human prostate cancer? Br J Cancer. 2008;99:1296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He L, et al. α-Mannosidase 2C1 attenuates PTEN function in prostate cancer cells. Nat Commun. 2011;2:307.

    Article  PubMed  CAS  Google Scholar 

  46. Schmitz M, et al. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer. 2007;120:1284–92.

    Article  CAS  PubMed  Google Scholar 

  47. Mulholland DJ, Dedhar S, Wu H, Nelson CC. PTEN and GSK3β: key regulators of progression to androgen-independent prostate cancer. Oncogene. 2006;25:329–37.

    Article  CAS  PubMed  Google Scholar 

  48. Carter BS, Epstein JI, Isaacs WB. Ras gene mutations in human prostate cancer. Cancer Res. 1990;50:6830–2.

    CAS  PubMed  Google Scholar 

  49. Gumerlock PH, Poonamallee UR, Meyers FJ, Vere White RW. Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res. 1991;51:1632–7.

    CAS  PubMed  Google Scholar 

  50. Cho NY, et al. BRAF and KRAS mutations in prostatic adenocarcinoma. Int J Cancer. 2006;119:1858–62.

    Article  CAS  PubMed  Google Scholar 

  51. Wang S, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.

    Article  CAS  PubMed  Google Scholar 

  52. Mulholland DJ, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang X, Gyabaah K, NickKholgh B, Cline JM, Balaji KC. Novel in vivo model for combinatorial fluorescence labeling in mouse prostate. Prostate. 2015;75:988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mulholland DJ, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carver BS, et al. Reciprocal feedback regulation of PI3 K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu C, Huang J. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem. 2007;282:3571–83.

    Article  CAS  PubMed  Google Scholar 

  57. Kinkade CW, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118:3051–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bello-DeOcampo D, Tindall DJ. TGF-betal/Smad signaling in prostate cancer. Curr Drug Targets. 2003;4:197–207.

    Article  CAS  PubMed  Google Scholar 

  59. Cao Z, Kyprianou N. Mechanisms navigating the TGF-ß pathway in prostate cancer. Asian J Urol. 2015;2:11–8.

    Article  Google Scholar 

  60. Perry KT, Anthony CT, Steiner MS. Immunohistochemical localization of TGFβ1, TGFβ2, and TGFβ3 in normal and malignant human prostate. Prostate. 1997;33:133–40.

    Article  CAS  PubMed  Google Scholar 

  61. Lee C, et al. Transforming growth factor-β in benign and malignant prostate. Prostate. 1999;39:285–90.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu B, Kyprianou N. Transforming growth factor beta and prostate cancer. Cancer Treat Res. 2005;126:157–73.

    Article  PubMed  Google Scholar 

  63. Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis. 2002;23:967–75.

    Article  CAS  PubMed  Google Scholar 

  64. Guo Y, Jacobs SC, Kyprianou N. Down-regulation of protein and mRNA expression for transforming growth factor-β (TGF-β1) type I and type II receptors in human prostate cancer. Int J Cancer. 1997;71:573–9.

    Article  CAS  PubMed  Google Scholar 

  65. Shariat SF, et al. Association of pre- and postoperative plasma levels of transforming growth factor β1 and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res. 2004;10:1992–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12:22–9.

    Article  CAS  PubMed  Google Scholar 

  67. Seoane J. Escaping from the TGFβ anti-proliferative control. Carcinogenesis. 2006;27:2148–56.

    Article  CAS  PubMed  Google Scholar 

  68. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER. Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology. 1994;135:2240–7.

    CAS  PubMed  Google Scholar 

  69. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37:19–29.

    Article  CAS  PubMed  Google Scholar 

  70. Jones E, Pu H, Kyprianou N. Targeting TGF-β in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets. 2009;13:227–34.

    Article  CAS  PubMed  Google Scholar 

  71. Guo Y, Kyprianou N. Restoration of transforming growth factor β signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 1999;59:1366–71.

    CAS  PubMed  Google Scholar 

  72. Wu SF, Sun HZ, Qi XD, Tu ZH. Effect of epristeride on the expression of IGF-1 and TGF-β receptors in androgen-induced castrated rat prostate. Exp Biol Med (Maywood). 2001;226:954–60.

    CAS  Google Scholar 

  73. Partin JV, Anglin IE, Kyprianou N. Quinazoline-based α1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-β signalling and I κBα induction. Br J Cancer. 2003;88:1615–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Culig Z, Puhr M. Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol. 2012;360:52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43:374–9.

    Article  CAS  PubMed  Google Scholar 

  76. Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate. 1999;41:127–33.

    Article  CAS  PubMed  Google Scholar 

  77. Wise GJ, Marella VK, Talluri G, Shirazian D. Cytokine variations in patients with hormone treated prostate cancer. J Urol. 2000;164:722–5.

    Article  CAS  PubMed  Google Scholar 

  78. Twillie DA, et al. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology. 1995;45:542–9.

    Article  CAS  PubMed  Google Scholar 

  79. Shariat SF, et al. Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology. 2001;58:1008–15.

    Article  CAS  PubMed  Google Scholar 

  80. Akimoto S, Okumura A, Fuse H. Relationship between serum levels of interleukin-6, tumor necrosis factor-α and bone turnover markers in prostate cancer patients. Endocr J. 1998;45:183–9.

    Article  CAS  PubMed  Google Scholar 

  81. Adler HL, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-β1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182–7.

    Article  CAS  PubMed  Google Scholar 

  82. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90:2312–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Royuela M, et al. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol. 2004;202:41–9.

    Article  CAS  PubMed  Google Scholar 

  84. Degeorges A, et al. Stromal cells from human benign prostate hyperplasia produce a growth-inhibitory factor for LNCaP prostate cancer cells, identified as interleukin-6. Int J Cancer. 1996;68:207–14.

    Article  CAS  PubMed  Google Scholar 

  85. Shariat SF, et al. External validation of a biomarker-based preoperative nomogram predicts biochemical recurrence after radical prostatectomy. J Clin Oncol. 2008;26:1526–31.

    Article  CAS  PubMed  Google Scholar 

  86. Alcover J, et al. Prognostic value of IL-6 in localized prostatic cancer. Anticancer Res. 2010;30:4369–72.

    PubMed  Google Scholar 

  87. Svatek RS, et al. Pre-treatment biomarker levels improve the accuracy of post-prostatectomy nomogram for prediction of biochemical recurrence. Prostate. 2009;69:886–94.

    Article  CAS  PubMed  Google Scholar 

  88. Kattan MW, et al. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol. 2003;21:3573–9.

    Article  CAS  PubMed  Google Scholar 

  89. Bishop JL, Thaper D, Zoubeidi A. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers (Basel). 2014;6:829–59.

    Article  CAS  Google Scholar 

  90. Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007;251:199–210.

    Article  CAS  PubMed  Google Scholar 

  91. Gao B, et al. Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett. 2001;488:179–84.

    Article  CAS  PubMed  Google Scholar 

  92. Cao J, et al. Distinct roles for the catalytic and hemopexin domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem. 2004;279:14129–39.

    Article  CAS  PubMed  Google Scholar 

  93. Romanov VI, Whyard T, Adler HL, Waltzer WC, Zucker S. Prostate cancer cell adhesion to bone marrow endothelium: the role of prostate-specific antigen. Cancer Res. 2004;64:2083–9.

    Article  CAS  PubMed  Google Scholar 

  94. Nguyen HL, et al. Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol Cancer Res. 2011;9:1305–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kesanakurti D, Chetty C, Dinh DH, Gujrati M, Rao JS. Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with α5β1 integrin in glioma. Oncogene. 2013;32:327–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dhir R, et al. Stat3 activation in prostatic carcinomas. Prostate. 2002;51:241–6.

    Article  CAS  PubMed  Google Scholar 

  97. Liu X, et al. Correlation analysis of JAK-STAT pathway components on prognosis of patients with prostate cancer. Pathol Oncol Res. 2012;18:17–23.

    Article  PubMed  CAS  Google Scholar 

  98. Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer. 2008;15:367–90.

    Article  CAS  PubMed  Google Scholar 

  99. Gu L, et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer. 2010;17:481–93.

    Article  CAS  PubMed  Google Scholar 

  100. Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res. 2008;14:1317–24.

    Article  CAS  PubMed  Google Scholar 

  101. Ahonen TJ, et al. Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem. 2003;278:27287–92.

    Article  CAS  PubMed  Google Scholar 

  102. Li H, et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res. 2004;64:4774–82.

    Article  CAS  PubMed  Google Scholar 

  103. Li H, et al. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res. 2005;11:5863–8.

    Article  CAS  PubMed  Google Scholar 

  104. Ahonen TJ, et al. Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem. 2003;278:27287–92.

    Article  CAS  PubMed  Google Scholar 

  105. Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res. 2008;14:1317–24.

    Article  CAS  PubMed  Google Scholar 

  106. Kazansky AV, Spencer DM, Greenberg NM. Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res. 2003;63:8757–62.

    CAS  PubMed  Google Scholar 

  107. Aalinkeel R, et al. Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘Ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med. 2010;7:177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Deeble PD, Murphy DJ, Parsons SJ, Cox ME. Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol. 2001;21:8471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aprikian AG, Tremblay L, Han K, Chevalier S. Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int J Cancer. 1997;72:498–504.

    Article  CAS  PubMed  Google Scholar 

  110. Lin J, Freeman MR. Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate. 2003;54:1–7.

    Article  PubMed  CAS  Google Scholar 

  111. Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol. 2001;21:8385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y. Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res. 2003;63:2037–41.

    CAS  PubMed  Google Scholar 

  113. Barki-Harrington L, Daaka Y. Bradykinin induced mitogenesis of androgen independent prostate cancer cells. J Urol. 2001;165:2121–5.

    Article  CAS  PubMed  Google Scholar 

  114. Barki-Harrington L, et al. Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J. 2003;371:581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer. 2003;3:110–6.

    Article  CAS  PubMed  Google Scholar 

  116. Nelson JB, et al. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res. 1996;56:663–8.

    CAS  PubMed  Google Scholar 

  117. Porter AT, F A C R O, Ben-Josef E. Humoral mechanisms in prostate cancer: a role for FSH. Urol Oncol. 2001;6:131–8.

    Article  CAS  PubMed  Google Scholar 

  118. Chen T, Cho RW, Stork PJ, Weber MJ. Elevation of cyclic adenosine 3′,5′-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 1999;59:213–8.

    CAS  PubMed  Google Scholar 

  119. Kue PF, Daaka Y. Essential role for G proteins in prostate cancer cell growth and signaling. J Urol. 2000;164:2162–7.

    Article  CAS  PubMed  Google Scholar 

  120. Guo C, Luttrell LM, Price DT. Mitogenic signaling in androgen sensitive and insensitive prostate cancer cell lines. J Urol. 2000;163:1027–32.

    Article  CAS  PubMed  Google Scholar 

  121. Kue PF, et al. Lysophosphatidic acid-regulated mitogenic ERK signaling in androgen-insensitive prostate cancer PC-3 cells. Int J Cancer. 2002;102:572–9.

    Article  CAS  PubMed  Google Scholar 

  122. Seethalakshmi L, Mitra SP, Dobner PR, Menon M, Carraway RE. Neurotensin receptor expression in prostate cancer cell line and growth effect of NT at physiological concentrations. Prostate. 1997;31:183–92.

    Article  CAS  PubMed  Google Scholar 

  123. Liu XH, et al. Prostaglandin E2 induces hypoxia-inducible factor-1α stabilization and nuclear localization in a human prostate cancer cell line. J Biol Chem. 2002;277:50081–6.

    Article  CAS  PubMed  Google Scholar 

  124. Chay CH, et al. A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology. 2002;60:760–5.

    Article  PubMed  Google Scholar 

  125. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007;7:79–94.

    Article  CAS  PubMed  Google Scholar 

  126. Haese A, et al. Human glandular kallikrein 2: a potential serum marker for predicting the organ confined versus non-organ confined growth of prostate cancer. J Urol. 2000;163:1491–7.

    Article  CAS  PubMed  Google Scholar 

  127. Charlesworth MC, Young CY, Miller VM, Tindall DJ. Kininogenase activity of prostate-derived human glandular kallikrein (hK2) purified from seminal fluid. J Androl. 1999;20:220–9.

    CAS  PubMed  Google Scholar 

  128. Penisten DK. The history of optometry in America: information waiting to be found. Hindsight. 1997;28:1–5.

    CAS  PubMed  Google Scholar 

  129. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992;44:1–80.

    CAS  PubMed  Google Scholar 

  130. Meehan KL, Sadar MD. Androgens and androgen receptor in prostate and ovarian malignancies. Front Biosci. 2003;8:d780–800.

    Article  CAS  PubMed  Google Scholar 

  131. Culig Z, et al. Activation of the androgen receptor by polypeptide growth factors and cellular regulators. World J Urol. 1995;13:285–9.

    Article  CAS  PubMed  Google Scholar 

  132. Porter AT, F A C R O, Ben-Josef E. Humoral mechanisms in prostate cancer: a role for FSH. Urol Oncol. 2001;6:131–8.

    Article  CAS  PubMed  Google Scholar 

  133. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–91.

    Article  CAS  PubMed  Google Scholar 

  134. Xie Y, Gibbs TC, Mukhin YV, Meier KE. Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J Biol Chem. 2002;277:32516–26.

    Article  CAS  PubMed  Google Scholar 

  135. Xu LL, et al. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res. 2000;60:6568–72.

    CAS  PubMed  Google Scholar 

  136. Ben-Josef E, et al. Hormone-refractory prostate cancer cells express functional follicle-stimulating hormone receptor (FSHR). J Urol. 1999;161:970–6.

    Article  CAS  PubMed  Google Scholar 

  137. Gohji K, Kitazawa S, Tamada H, Katsuoka Y, Nakajima M. Expression of endothelin receptor a associated with prostate cancer progression. J Urol. 2001;165:1033–6.

    Article  CAS  PubMed  Google Scholar 

  138. Nelson JB. Endothelin inhibition: novel therapy for prostate cancer. J Urol. 2003;170:S65–7.

    Article  CAS  PubMed  Google Scholar 

  139. Carducci MA, et al. Effect of endothelin-A receptor blockade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-controlled trial. J Clin Oncol. 2003;21:679–89.

    Article  CAS  PubMed  Google Scholar 

  140. Okegawa T, Li Y, Pong RC, Hsieh JT. Cell adhesion proteins as tumor suppressors. J Urol. 2002;167:1836–43.

    Article  CAS  PubMed  Google Scholar 

  141. Stewart DA, Cooper CR, Sikes RA. Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol. 2004;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Knox JD, et al. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate. Am J Pathol. 1994;145:167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nagle RB, et al. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol. 1995;146:1498–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bonkhoff H, Stein U, Remberger K. Differential expression of α6 and α2 very late antigen integrins in the normal, hyperplastic, and neoplastic prostate: simultaneous demonstration of cell surface receptors and their extracellular ligands. Hum Pathol. 1993;24:243–8.

    Article  CAS  PubMed  Google Scholar 

  146. Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. J Cell Sci. 2001;114:3865–72.

    CAS  PubMed  Google Scholar 

  147. Davis TL, et al. Identification of a novel structural variant of the α6 integrin. J Biol Chem. 2001;276:26099–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sutherland M, Gordon A, Shnyder SD, Patterson LH, Sheldrake HM. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers (Basel). 2012;4:1106–45.

    Article  CAS  Google Scholar 

  149. Cress AE, Rabinovitz I, Zhu W, Nagle RB. The α6β1 and α6β4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 1995;14:219–28.

    Article  CAS  PubMed  Google Scholar 

  150. Schmelz M, et al. Different phenotypes in human prostate cancer: α6 or α3 integrin in cell-extracellular adhesion sites. Neoplasia. 2002;4:243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB. Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res. 1993;53:3585–90.

    CAS  PubMed  Google Scholar 

  152. Umbas R, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 1994;54:3929–33.

    CAS  PubMed  Google Scholar 

  153. Bussemakers MJ, Giroldi LA, Vanbokhoven A, Schalken JA. Transcriptional regulation of the human E-cadherin gene in human prostate cancer cell lines: characterization of the human E-cadherin gene promoter. Biochem Biophys Res Commun. 1994;203:1284–90.

    Article  CAS  PubMed  Google Scholar 

  154. Ross JS, et al. E-cadherin expression in prostatic carcinoma biopsies: correlation with tumor grade, DNA content, pathologic stage, and clinical outcome. Mod Pathol. 1994;7:835–41.

    CAS  PubMed  Google Scholar 

  155. Pan Y, et al. Chromosome 16q24 deletion and decreased E-cadherin expression: possible association with metastatic potential in prostate cancer. Prostate. 1998;36:31–8.

    Article  CAS  PubMed  Google Scholar 

  156. Noe V, Chastre E, Bruyneel E, Gespach C, Mareel M. Extracellular regulation of cancer invasion: the E-cadherin-catenin and other pathways. Biochem Soc Symp. 1999;65:43–62.

    CAS  PubMed  Google Scholar 

  157. Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996;148:1375–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Umbas R, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 1992;52:5104–9.

    CAS  PubMed  Google Scholar 

  159. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–11.

    Article  CAS  PubMed  Google Scholar 

  160. Jaggi M, et al. Aberrant expression of E-cadherin and beta-catenin in human prostate cancer. Urol Oncol. 2005;23:402–6.

    Article  CAS  PubMed  Google Scholar 

  161. Tran NL, Nagle RB, Cress AE, Heimark RL. N-Cadherin expression in human prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion with stromal cells. Am J Pathol. 1999;155:787–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bussemakers MJ, et al. Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res. 1992;52:2916–22.

    CAS  PubMed  Google Scholar 

  163. Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986;233:467–70.

    Article  CAS  PubMed  Google Scholar 

  164. Curley GP, Blum H, Humphries MJ. Integrin antagonists. Cell Mol Life Sci. 1999;56:427–41.

    Article  CAS  PubMed  Google Scholar 

  165. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775:163–80.

    CAS  PubMed  Google Scholar 

  166. Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9:804–20.

    Article  CAS  PubMed  Google Scholar 

  167. Gutheil JC, et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin Cancer Res. 2000;6:3056–61.

    CAS  PubMed  Google Scholar 

  168. Delbaldo C, et al. Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Invest New Drugs. 2008;26:35–43.

    Article  CAS  PubMed  Google Scholar 

  169. McNeel DG, et al. Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res. 2005;11:7851–60.

    Article  CAS  PubMed  Google Scholar 

  170. Hersey P, et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, ± dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010;116:1526–34.

    Article  CAS  PubMed  Google Scholar 

  171. Mullamitha SA, et al. Phase I evaluation of a fully human anti-αv integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res. 2007;13:2128–35.

    Article  CAS  PubMed  Google Scholar 

  172. Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19:683–97.

    Article  CAS  PubMed  Google Scholar 

  173. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4:118–32.

    Article  CAS  PubMed  Google Scholar 

  174. Chen G, et al. Up-regulation of Wnt-1 and β-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer. 2004;101:1345–56.

    Article  CAS  PubMed  Google Scholar 

  175. Katoh M. Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol. 2001;19:1003–7.

    CAS  PubMed  Google Scholar 

  176. Wang Q, et al. A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS ONE. 2010;5:e10456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Sato H, et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis. 2007;28:2459–66.

    Article  CAS  PubMed  Google Scholar 

  178. Wissmann C, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 2003;201:204–12.

    Article  CAS  PubMed  Google Scholar 

  179. Hall CL, Kang S, MacDougald OA, Keller ET. Role of Wnts in prostate cancer bone metastases. J Cell Biochem. 2006;97:661–72.

    Article  CAS  PubMed  Google Scholar 

  180. Verras M, Sun Z. Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Lett. 2006;237:22–32.

    Article  CAS  PubMed  Google Scholar 

  181. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  182. Li X, et al. Prostate tumor progression is mediated by a paracrine TGF-β/Wnt3a signaling axis. Oncogene. 2008;27:7118–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Karhadkar SS, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707–12.

    Article  CAS  PubMed  Google Scholar 

  184. Teglund S, Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta. 2010;1805:181–208.

    CAS  PubMed  Google Scholar 

  185. Satheesha S, et al. Targeting hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma. Oncogene. 2015.

    Google Scholar 

  186. Gonnissen A, Isebaert S, Haustermans K. Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci. 2013;14:13979–4007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Yao E, Chuang PT. Hedgehog signaling: from basic research to clinical applications. J Formos Med Assoc. 2015;114:569–76.

    Article  CAS  PubMed  Google Scholar 

  188. Lee SW, Moskowitz MA, Sims JR. Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med. 2007;19:445–51.

    PubMed  Google Scholar 

  189. Adolphe C, Hetherington R, Ellis T, Wainwright B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res. 2006;66:2081–8.

    Article  CAS  PubMed  Google Scholar 

  190. Sanchez P, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA. 2004;101:12561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vokes SA, Ji H, Wong WH, McMahon AP. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 2008;22:2651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim TJ, Lee JY, Hwang TK, Kang CS, Choi YJ. Hedgehog signaling protein expression and its association with prognostic parameters in prostate cancer: a retrospective study from the view point of new 2010 anatomic stage/prognostic groups. J Surg Oncol. 2011;104:472–9.

    Article  CAS  PubMed  Google Scholar 

  193. Kim TJ, Lee JY, Hwang TK, Kang CS, Choi YJ. Hedgehog signaling protein expression and its association with prognostic parameters in prostate cancer: a retrospective study from the view point of new 2010 anatomic stage/prognostic groups. J Surg Oncol. 2011;104:472–9.

    Article  CAS  PubMed  Google Scholar 

  194. Ibuki N, et al. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling. Int J Cancer. 2013;133:1955–66.

    Article  CAS  PubMed  Google Scholar 

  195. Antonarakis ES, et al. Repurposing itraconazole as a treatment for advanced prostate cancer: a noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist. 2013;18:163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  197. Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC. Protein kinase C μ is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun. 2003;307:254–60.

    Article  CAS  PubMed  Google Scholar 

  198. Van LJ, et al. Protein kinase D: an intracellular traffic regulator on the move. Trends Cell Biol. 2002;12:193–200.

    Article  Google Scholar 

  199. Ziegler S, et al. A novel protein kinase D phosphorylation site in the tumor suppressor Rab interactor 1 is critical for coordination of cell migration. Mol Biol Cell. 2011;22:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hurd C, Waldron RT, Rozengurt E. Protein kinase D complexes with C-Jun N-terminal kinase via activation loop phosphorylation and phosphorylates the C-Jun N-terminus. Oncogene. 2002;21:2154–60.

    Article  CAS  PubMed  Google Scholar 

  201. Kisfalvi K, Hurd C, Guha S, Rozengurt E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. J Cell Physiol. 2010;223:309–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Sundram V, Chauhan SC, Jaggi M. Emerging roles of protein kinase D1 in cancer. Mol Cancer Res. 2011;9:985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC. Protein kinase C μ is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun. 2003;307:254–60.

    Article  CAS  PubMed  Google Scholar 

  204. Jaggi M, Chauhan SC, Du C, Balaji KC. Bryostatin 1 modulates β-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Ther. 2008;7:2703–12.

    Article  CAS  PubMed  Google Scholar 

  205. Jaggi M, et al. E-cadherin phosphorylation by protein kinase D1/protein kinase Cμ is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res. 2005;65:483–92.

    CAS  PubMed  Google Scholar 

  206. Syed V, Mak P, Du C, Balaji KC. β-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J Cell Biochem. 2008;104:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hassan S, Biswas MH, Zhang C, Du C, Balaji KC. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene. 2009;28:4386–96.

    Article  CAS  PubMed  Google Scholar 

  208. Mak P, et al. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun. 2008;373:618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. NickKholgh B, et al. Cell line modeling to study biomarker panel in prostate cancer. The Prostate. doi:10.1002/pros.23116.

    Google Scholar 

  210. Van Lint JV, Sinnett-Smith J, Rozengurt E. Expression and characterization of PKD, a phorbol ester and diacylglycerol-stimulated serine protein kinase. J Biol Chem. 1995;270:1455–61.

    Article  PubMed  Google Scholar 

  211. Rozengurt E, Rey O, Waldron RT. Protein kinase D signaling. J Biol Chem. 2005;280:13205–8.

    Article  CAS  PubMed  Google Scholar 

  212. Eiseler T, Doppler H, Yan IK, Goodison S, Storz P. Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res. 2009;11:R13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Borges S, Storz P. Protein kinase D isoforms: new targets for therapy in invasive breast cancers? Expert Rev Anticancer Ther. 2013;13:895–8.

    Article  CAS  PubMed  Google Scholar 

  214. Borges S, et al. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res. 2013;15:R66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Balaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sittadjody, S., Thangasamy, T., NickKolgh, B., Balaji, K.C. (2016). Non-androgen Signaling Pathways in Castration-Resistant Prostate Cancer. In: Balaji, K. (eds) Managing Metastatic Prostate Cancer In Your Urological Oncology Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-31341-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31341-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31339-9

  • Online ISBN: 978-3-319-31341-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics