Skip to main content

Quasimodes in Integrable Systems and Semi-Classical Limit

  • Chapter
  • First Online:
Essays in Mathematics and its Applications
  • 914 Accesses

Abstract

Quasimodes are long-living quantum states that are localized along classical orbits. They can be considered as resonances, whose wave functions display semi-classical features. In some integrable systems, they have been constructed mainly by the coherent state method, and their connection with the classical motion has been extensively studied, in particular as a tool to perform the semi-classical limit of a quantum system. In this work, we present a method to construct quasimodes in integrable systems. Although the method is based on elementary procedures, it is quite general. It is shown that the requirement of a long lifetime and strong localization implies that the quasimode must be localized around a closed classical orbit. At a fixed degree of localization, the lifetime of the quasimode can be made arbitrarily longer with respect to the classical period in the asymptotic limit of large quantum numbers. It turns out that the coherent state method is a particular case of this general scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.I.: Modes and quasimodes. Funct. Anal. Appl. 6 (2), 94–101 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnett, S.M., Radmore, P.M.: Quantum theory of cavity quasimodes. Opt. Commun. 68, 364–368 (1988)

    Article  Google Scholar 

  3. Babic, V.M., Buldyrev, V.S.: Short Wave-Length Diffraction Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  4. Baldo, M., Raciti, F.: Building quasimodes in integrable billiards. Phys. Lett. A 223, 417–420 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balian, R., Bloch, R.: Eigenfrequency density oscillation. Ann. Phys. 69, 76–170 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, M.V.: Quantum scars of classical closed orbits in phase space. Proc. R. Soc. Lond. 423, 219–231 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bogomolny, E.B.: Smoothed wave functions of chaotic quantum systems. Physica D 31, 169–189 (1988)

    Article  MathSciNet  Google Scholar 

  8. Bohr, A., Mottelson, B.R.: Nuclear Structure, vol. II. Benjamin, New York (1975)

    MATH  Google Scholar 

  9. Chen, Y.F., Huang, K.F., Lan, Y.P.: Localization of wave patterns on classical periodic orbits in a square billiard. Phys. Rev. E 66, 046215–046221 (2002)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y.F., Huang, K.F., Lan, Y.P.: Quantum manifestations of classical periodic orbits in a square billiard: formation of vortex lattices. Phys. Rev. E 66, 066210–06621 (2002)

    Article  MathSciNet  Google Scholar 

  11. Colin de Verdiere, Y.: Quasimodes sur les variétées Riemanniennes. Invent. Math. 43, 15–52 (1977)

    Google Scholar 

  12. Gamblin, D.: Construction de quasimodes de Rayleigh á grande durée. J. Funct. Anal. 236, 201–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gradshteyn I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, Formula 8.453. Academic, New York (1991)

    Google Scholar 

  14. Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  Google Scholar 

  15. Heller, E.J.: Bound states eigenfunctions of classically chaotic Hamiltonian. Phys. Rev. Lett. 53, 1515–1518 (1984)

    Article  MathSciNet  Google Scholar 

  16. Kaplan, L., Heller, E.J.: Linear and nonlinear theory of eigenfunction scars. Ann. Phys. 264, 171–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaplan, L., Heller, E.J.: Measuring scars of periodic orbits. Phys. Rev. E 59, 6609–6628 (1999)

    Article  MathSciNet  Google Scholar 

  18. Keller, J.B., Rubinow, S.I.: Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)

    Article  MATH  Google Scholar 

  19. Mestayer, J.J., Wyker, B., Lancaster, J.C., Dunning, F.B., Reynhold, C.O., Yoshida S., Burgdörfer, J.: Realization of localized Bohr-like wave packets. Phys. Rev. Lett. 100, 243004–243007 (2008)

    Article  Google Scholar 

  20. Norris, A.N.: Rays,beams and quasimodes on thin shell structures. Wave Motion 21, 127–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paul, T., Uribe, A.: A construction of quasi-modes using coherent states. Ann. Inst. Henri Poincaré 59, 357–381 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Perez, E.: Long time approximations for solutions of wave equations via standing waves from quasimodes. J. Math. Pures et Appl. 90, 387–411 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polavieja, G.G., Borondo F., Benito, R.M.: Scars in groups of eigenstates in a classically chaotic system. Phys. Rev. Lett. 73, 1613–1616 (1994)

    Article  Google Scholar 

  24. Pollet, J., Meplan, O., Gignoux, C.: Elliptic eigenstates for the quantum harmonic oscillator. J. Phys. A Math. Gen. 28, 7287–7298 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ralston, J.V.: On the construction of quasimodes associated with stable periodic orbits. Commun. Math. Phys. 51, 219–242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stefanov, P: On the resonances of the Laplacian on waveguides. C.R. Acad. Sci. Paris 330, 105–108 (2000)

    MathSciNet  Google Scholar 

  27. Tomsovic, S., Heller, E.J.: Semiclassical construction of chaotic eigenstates. Phys. Rev.Lett. 70, 1405–1408 (1993)

    Article  Google Scholar 

  28. Wisniacki, D.A., Vergini, E., Benito, R.M., Borondo, F.: Scarring by homoclinic and heteroclinic orbits. Phys. Rev. Lett. 97, 094101–094106 (2006)

    Article  Google Scholar 

  29. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Raciti .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we evaluate for a generic potential the dependence of the angle \(\Delta \theta\) in Eq. (36) on the angular momentum l at a fixed energy E. In the expression of Eq. (35), it is convenient to introduce the new variable \(y^{2}\, =\, l^{2}/2mEr^{2}\). In the new variable, one gets

$$\displaystyle{ \Delta \theta \, =\, 2\,\int _{y_{_{m}}}^{y_{_{M}} } \frac{dy} {\sqrt{1\, -\, [y^{2 } \, +\, V (r)/E]}} }$$
(37)

where

$$\displaystyle{ r\, =\, r(y)\, =\, \frac{l} {\sqrt{2mE}\,y} }$$
(38)

The limits of integration \(y_{_{m}}\) and \(y_{_{M}}\) are the values at which the square root vanishes. Under the assumption of a monotonically increasing potential at increasing r, there are only two values, corresponding to the extremes of the radial oscillations

$$\displaystyle{ \frac{1} {E}V (r(y_{_{0}}))\, +\, y_{_{0}}^{2}\, =\, 1 }$$
(39)

where \(y_{_{0}}\) is either \(y_{_{m}}\) or \(y_{_{M}}\). If the potential is smooth and the radial motion has a non-zero amplitude (i.e. the trajectory is not exactly circular), y 0 is a smooth function of l, which actually appears only in the combination \(l/\sqrt{2mE}\). However, the integrand is singular at the integration limits, although the integral is of course converging. This does not allow to do any derivative with respect to l inside the integral to calculate the derivative of \(\Delta \theta\). We have then to analyse the contribution to the integral from an interval close to the limits of integration. If the trajectory is not circular, at \(y_{_{M}}\), the function R(y) inside the square root vanishes linearly, and the integrand can be written as

$$\displaystyle{ \frac{1} {\sqrt{1\, -\, R(y)}}\, =\, \frac{1} {\sqrt{R'(y_{_{M } } )(y_{_{M } } \, -\, y)}}\, +\, S(y) }$$
(40)

where R′ is the derivative of R and the remainder S(y) is a regular smooth function. The contribution to the integral from an interval \(\,y_{_{1}}\, <\, y\, <\, y_{_{M}}\), with \(y_{_{1}}\) some value close to \(y_{_{M}}\), can then be written as

$$\displaystyle{ \int _{y_{_{ 1}}}^{y_{_{M}} } \frac{dy} {\sqrt{R(y)}}\, =\, \frac{2} {\sqrt{R'(y_{_{M } } )}}\sqrt{y_{_{M } } \, -\, y_{_{1 }}}\, +\,\int _{ y_{_{ 1}}}^{y_{_{M}} }dy\,S(y) }$$
(41)

Explicitly, the derivative R′ is

$$\displaystyle{ R'(y_{_{M}})\, =\, -\frac{1} {E}V '\left ( \frac{l} {\sqrt{2mE}\,y_{_{M}}}\right ) \frac{l} {\sqrt{2mE}\,y_{_{M}}^{2}}\, +\, 2y_{_{M}} }$$
(42)

where \(\,\,V '(x)\, =\, dV/dx\). The same procedure can be followed for the lower limit \(y_{_{m}}\). At fixed E, the integral is therefore a smooth function of \(\,\,l/\sqrt{2mE}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baldo, M., Raciti, F. (2016). Quasimodes in Integrable Systems and Semi-Classical Limit. In: Rassias, T., Pardalos, P. (eds) Essays in Mathematics and its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31338-2_2

Download citation

Publish with us

Policies and ethics