Skip to main content

The Algebra of Gyrogroups: Cayley’s Theorem, Lagrange’s Theorem, and Isomorphism Theorems

  • Chapter
  • First Online:
Essays in Mathematics and its Applications

Abstract

Using the Clifford algebra formalism, we show that the unit ball of a real inner product space equipped with Einstein addition forms a uniquely 2-divisible gyrocommutative gyrogroup or a B-loop in the loop literature. One notable result is a compact formula for Einstein addition in terms of Möbius addition. In the second part of this paper, we show that the symmetric group of a gyrogroup admits the gyrogroup structure, thus obtaining an analog of Cayley’s theorem for gyrogroups. We examine subgyrogroups, gyrogroup homomorphisms, normal subgyrogroups, and quotient gyrogroups and prove the isomorphism theorems. We prove a version of Lagrange’s theorem for gyrogroups and use this result to prove that gyrogroups of particular order have the Cauchy property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, T.: Gyrometric preserving maps on Einstein gyrogroups, Möbius gyrogroups and proper velocity gyrogroups. Nonlinear Funct. Anal. Appl. 19, 1–17 (2014)

    MATH  Google Scholar 

  2. Aschbacher, M.: On Bol loops of exponent 2. J. Algebra 288, 99–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumeister, B., Stein, A.: The finite Bruck loops. J. Algebra 330, 206–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beardon, A.F.: Algebra and Geometry. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  5. Bruck, R.H.: A Survey of Binary Systems, 3rd edn. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  6. Burn, R.P.: Finite Bol loops. Math. Proc. Camb. Philos. Soc. 84, 377–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chein, O.: Moufang loops of small order I. Trans. Am. Math. Soc. 188, 31–51 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chein, O., Kinyon, M.K., Rajah, A., Vojtěchovský, P.: Loops and the Lagrange property. Results Math. 43, 74–78 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Ungar, A.A.: From the group SL(2, C) to gyrogroups and gyrovector spaces and hyperbolic geometry. Found. Phys. 31 (11), 1611–1639 (2001)

    Google Scholar 

  10. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Springer, Berlin (1997)

    MATH  Google Scholar 

  11. Demirel, O., Seyrantepe, E.S.: The cogyrolines of Möbius gyrovector spaces are metric but not periodic. Aequationes Math. 85, 185–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  13. Feder, T.: Strong near subgroups and left gyrogroups. J. Algebra 259, 177–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferreira, M.: Factorizations of Möbius gyrogroups. Adv. Appl. Clifford Algebras 19, 303–323 (2009)

    Article  MATH  Google Scholar 

  15. Ferreira, M.: Spherical continuous wavelet transforms arising from sections of the Lorentz group. Appl. Comput. Harmon. Anal. 26, 212–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferreira, M.: Gyrogroups in projective hyperbolic Clifford analysis. In: Hypercomplex Analysis and Applications, pp. 61–80. Trends in Mathematics. Springer, Basel (2011)

    Google Scholar 

  17. Ferreira, M.: Harmonic analysis on the Einstein gyrogroup. J. Geom. Symmetry Phys. 35, 21–60 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Ferreira, M., Ren, G.: Möbius gyrogroups: a Clifford algebra approach. J. Algebra 328, 230–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, M., Sommen, F.: Complex boosts: a Hermitian Clifford algebra approach. Adv. Appl. Clifford Algebras 23, 339–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Foguel, T., Kinyon, M.K.: Uniquely 2-divisible Bol loops. J. Algebra Appl. 9 (4), 591–601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Foguel, T., Ungar, A.A.: Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3, 27–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foguel, T., Ungar, A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pac. J. Math. 197 (1), 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Foguel, T., Kinyon, M.K., Phillips, J.D.: On twisted subgroups and Bol loops of odd order. Rocky Mt. J. Math. 36 (1), 183–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Friedman, Y., Scarr, T.: Physical Applications of Homogeneous Balls. Progress in Mathematical Physics, vol. 40. Birkhäuser, Boston (2005)

    Google Scholar 

  25. Gallian, J.A.: The classification of groups of order 2p. Math. Mag. 74 (1), 60–61 (2001)

    Google Scholar 

  26. Gallian, J.A., Moulton, D.: On groups of order pq. Math. Mag. 68 (4), 287–288 (1995)

    Google Scholar 

  27. Gilbert, G.J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  28. Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  29. Greene, R.E., Krantz, S.G.: Function Theory of One Complex Variable, 3rd edn. Graduate Studies in Mathematics, vol. 40. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  30. Grishkov, A.N., Zavarnitsine, A.V.: Lagrange’s theorem for Moufang loops. Math. Proc. Camb. Philos. Soc. 139, 41–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grove, L.C.: Classical Groups and Geometric Algebra. Graduate Studies in Mathematics, vol. 39. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  32. Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  33. Howie, J.M.: Fields and Galois Theory. Springer Undergraduate Mathematics Series. Springer, London (2005)

    MATH  Google Scholar 

  34. Issa, A.N.: Gyrogroups and homogeneous loops. Rep. Math. Phys. 44 (3), 345–358 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Issa, A.N.: Left distributive quasigroups and gyrogroups. J. Math. Sci. Univ. Tokyo 8, 1–16 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Kiechle, H.: Theory of K-Loops. Lecture notes in Mathematics, vol. 1778. Springer, Berlin (2002)

    Google Scholar 

  37. Kim, S.: Distances of qubit density matrices on Bloch sphere. J. Math. Phys. 52, 1–8 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Kim, S., Lawson, J.: Unit balls, Lorentz boosts, and hyperbolic geometry. Results. Math. 63, 1225–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kim, S., Kim, S., Lee, H.: Factorizations of invertible density matrices. Linear Algebra Appl. 463, 190–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kinyon, M.K., Jones, O.: Loops and semidirect products. Commun. Algebra 28, 4137–4164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Krammer, W., Urbantke, H.K.: K-loops, gyrogroups and symmetric spaces. Results Math. 33, 310–327 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lal, R., Yadav, A.C.: Topological right gyrogroups and gyrotransversals. Commun. Algebra 41, 3559–3575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lanski, C.: A characterization of infinite cyclic groups. Math. Mag. 74 (1), 61–65 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lawson, J.: Clifford algebras, Möbius transformations, Vahlen matrices, and B-loops. Comment. Math. Univ. Carolin. 51, 319–331 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Lawson, J., Lim, Y.: Symmetric sets with midpoints and algebraically equivalent theories. Results Math. 46, 37–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  47. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. London Mathematical Society Lecture Note Series, vol. 286. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  48. Matolcsi, T., Matolcsi, M.: Thomas rotation and Thomas precession. Int. J. Theor. Phys. 44 (1), 63–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Moorehouse, G.E.: http://www.uwyo.edu/moorhouse/pub/bol/index.html. Accessed Nov 4 2014

  50. Nagy, G.P.: A class of finite simple Bol loops of exponent 2. Trans. Am. Math. Soc. 361 (10), 5331–5343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pflugfelder, H.O.: Quasigroups and Loops: An Introduction. Sigma Series in Pure Mathematics, vol. 7. Heldermann Verlag, Berlin (1991)

    Google Scholar 

  52. Rostamzadeh, M., Taherian, S.G.: Defect and area in Beltrami-Klein model of hyperbolic geometry. Results Math. 63, 229–239 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rostamzadeh, M., Taherian, S.G.: On trigonometry in Beltrami-Klein model of hyperbolic geometry. Results Math. 65, 361–369 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Roth, R.L.: A history of Lagrange’s theorem on groups. Math. Mag. 74 (2), 99–108 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sabinin, L.V., Sabinina, L.L., Sbitneva, L.V.: On the notion of gyrogroup. Aequationes Math. 56, 11–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sexl, R.U., Urbantke, H.K.: Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, Vienna (2001). Revised and translated from the third German edition by H. K. Urbantke (1992)

    Google Scholar 

  57. Sinefakopoulos, A.: On groups of order p 2. Math. Mag. 70 (3), 212–213 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Smith, J.D.H., Ungar, A.A.: Abstract space-times and their Lorentz groups. J. Math. Phys. 37, 3073–3098 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sönmez, N., Ungar, A.A.: The Einstein relativistic velocity model of hyperbolic geometry and its plane separation axiom. Adv. Appl. Clifford Algebras 23, 209–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Suksumran, T., Wiboonton, K.: Lagrange’s theorem for gyrogroups and the Cauchy property. Quasigroups Relat. Syst. 22 (2), 283–294 (2014)

    MathSciNet  MATH  Google Scholar 

  61. Suksumran, T., Wiboonton, K.: Isomorphism theorems for gyrogroups and L-subgyrogroups. J. Geom. Symmetry Phys. 37, 67–83 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Suksumran, T., Wiboonton, K.: Einstein gyrogroup as a B-loop. Rep. Math. Phys. 76, 63–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Taherian, S.G.: On algebraic structures related to Beltrami-Klein model of hyperbolic geometry. Results Math. 57, 205–219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ungar, A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Results Math. 16, 168–179 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ungar, A.A.: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Fundamental Theories of Physics, vol. 117. Springer, Netherlands (2002)

    Google Scholar 

  66. Ungar, A.A.: The hyperbolic geometric structure of the density matrix for mixed state qubits. Found. Phys. 32 (11), 1671–1699 (2002)

    Article  MathSciNet  Google Scholar 

  67. Ungar, A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific, Hackensack (2005)

    Book  MATH  Google Scholar 

  68. Ungar, A.A.: The proper-time Lorentz group demystified. J. Geom. Symmetry Phys. 4, 69–95 (2005)

    MathSciNet  MATH  Google Scholar 

  69. Ungar, A.A.: Einstein’s velocity addition law and its hyperbolic geometry. Comput. Math. Appl. 53, 1228–1250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ungar, A.A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  71. Ungar, A.A.: From Möbius to gyrogroups. Am. Math. Mon. 115 (2), 138–144 (2008)

    MathSciNet  MATH  Google Scholar 

  72. Ungar, A.A.: Einstein’s special relativity: the hyperbolic geometric viewpoint. In: PIRT Conference Proceedings, pp. 1–35 (2009). Budapest, Sept 4–6, 2009

    Google Scholar 

  73. Ungar, A.A.: A Gyrovector Space Approach to Hyperbolic Geometry. Synthesis Lectures on Mathematics and Statistics #4. Morgan & Claypool, San Rafael (2009)

    Google Scholar 

  74. Ungar, A.A.: Gyrations: the missing link between classical mechanics with its underlying Euclidean geometry and relativistic mechanics with its underlying hyperbolic geometry. In: Essays in Mathematics and Its Applications, pp. 463–504. Springer, Berlin (2012)

    Google Scholar 

  75. Ungar, A.A.: Hyperbolic geometry. J. Geom. Symmetry Phys. 32, 61–86 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank my advisor Keng Wiboonton for his orientation, guidance, and encouragement during this work. I would like to thank Professor Themistocles M. Rassias and Professor Abraham A. Ungar for the kind invitation to contribute a paper to this volume dedicated to the memory of Vladimir Arnold and for their helpful suggestions during the preparation of the manuscript. This work was partially supported by National Science Technology Development Agency (NSTDA), through the Junior Science Talent Project (JSTP). The financial support from the Institute for the Promotion of Teaching Science and Technology (IPST), through the Development and Promotion of Science and Technology Talents Project (DPST), is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerapong Suksumran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suksumran, T. (2016). The Algebra of Gyrogroups: Cayley’s Theorem, Lagrange’s Theorem, and Isomorphism Theorems. In: Rassias, T., Pardalos, P. (eds) Essays in Mathematics and its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31338-2_15

Download citation

Publish with us

Policies and ethics