Skip to main content

Spirobifluorenyl-Porphyrins and their Derived Polymers for Homogeneous or Heterogeneous Catalysis

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

Decorating porphyrin cores at their meso positions by one, two or four 9,9′-Spirobifluorenyl (SBF) units is an interesting design strategy to obtain efficient and recyclable heterogeneous catalysts for various chemical reactions. The synthesis of metalloporphyrin polymers (RuIICO, FeIIICl, MnIIICl) is easily performed along anodic oxidation of their related monomers or along copolymerization of their monomers in presence of 9,9′-SBF. The efficiency of this polymerization mainly depends on the number of SBF units around the porphyrin cores and on the nature of the metal ion within the porphyrin ligand. Polymer catalysts in heterogeneous phase appear as efficient as the monomer catalysts in homogeneous phase. The main interest of catalysis with polymers is that they can be very easily separated from the reaction medium after reaction by a simple filtration and that they can be washed and reused without loss of their activity. The recyclability of metalloporphyrins polymers is of high interest in the field of catalysis. For asymmetric catalysis, recyclable chiral polymetalloporphyrins based on the SBF scaffold are also of high interest. The chirality may be introduced either by the dimethanoanthracenyl (DMA) units linked to SBF units (acting as electropolymerizable entities) or by a chiral SBF fragment which can be electropolymerizable. Compared to other porphyrin immobilization processes, anodic oxidation is hence a relatively easy tool as the polymer is directly obtained on the anode surface, easily separated under its insoluble form and directly usable as recyclable catalyst for many chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the αα atropisomer, the substituents attached to the meso position are situated on the same side of the porphyrin plane wheras in the αβ atropisomer, the substituents attached to the meso position are situated on the opposite sides of the porphyrin plane.

  2. 2.

    No X-Ray structure is nevertheless reported for spirobifluorenyl-porphyrins which could confirme a possible deformation of the macrocycle.

References

  1. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers-Persistent models and new concept. Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  2. Guo X, Baumgarten M, Müllen K (2013) Designing p-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908

    Article  CAS  Google Scholar 

  3. Biesaga M, Pyrzynska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. A review. Talanta 51:209–224

    Article  CAS  Google Scholar 

  4. Gaillon L, Bedioui F, Devynck J, Battioni P (1993) Electrochemical characterization of manganese porphyrins fixed onto silica and layered dihydroxide matrices. J Electroanal Chem 347:435–442

    Article  CAS  Google Scholar 

  5. Gulino A, Mineo P, Scamporrino E, Vitalini D, Fragala I (2004) Molecularly engineered silica surfaces with an assembled porphyrin monolayer as optical NO2 molecular recognizers. Chem Mater 16:1838–1840

    Article  CAS  Google Scholar 

  6. Brunink JAJ, Di Natale C, Bungaro F, Davide FAM, D’Amico A, Paolesse R, Boschi T, Faccio M, Ferri G (1996) The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Anal Chim Acta 325:53–64

    Article  CAS  Google Scholar 

  7. Dobson DJ, Saini S (1997) Porphyrin-modified electrodes as biomimetic sensors for the determination of organohalide pollutants in aqueous samples. Anal Chem 69:3532–3538

    Article  CAS  Google Scholar 

  8. Snyder SR, White HS (1995) Electrochemistry and structure of thin films of (protoporphyrinato(IX))iron (III) chloride. J Phys Chem 99:5626–5632

    Article  CAS  Google Scholar 

  9. Plaschke M, Czolk R, Ache HJ (1995) Fluorimetric determination of mercury with a water-soluble porphyrin and porphyrin-doped sol-gel films. Anal Chim Acta 304:107–113

    Article  CAS  Google Scholar 

  10. Lee S-K, Okura I (1997) Porphyrin-doped sol-gel glass as a probe for oxygen sensing. Anal Chim Acta 342:181–188

    Article  CAS  Google Scholar 

  11. Gupta VK, Jain AK, Singh LP, Khurana U (1997) Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal Chim Acta 355:33–41

    Article  CAS  Google Scholar 

  12. Morales-Bahnik A, Czolk R, Reichert J, Ache HJ (1993) An optochemical sensor for Cd(II) and Hg(II) based on a porphyrin immobilized on Nafion® membranes. Sensors Actuat B Chem 13:424–426

    Article  CAS  Google Scholar 

  13. Czolk R (1996) Studies on the anion sensitivity of immobilized metalloporphyrins for application as optochemical sensors. Sensors Actuat B Chem 30:61–63

    Article  CAS  Google Scholar 

  14. Kashevskii AV, Lei J, Safronov AY, Ikeda O (2002) Electrocatalytic properties of meso-tetraphenylporphyrin cobalt for nitric oxide oxidation in methanolic solution and in Nafion® film. J Electroanal Chem 531:71–79

    Article  CAS  Google Scholar 

  15. Antonisse MMG, Snellink-Ruël BHM, Engbersen JFJ, Reinhoudt DN (1998) Chemically modified field effect transistors with nitrite or fluoride selectivity. J Chem Soc Perkin Trans 2:773–777

    Article  Google Scholar 

  16. Röösli S, Pretsch E, Morf WE, Tsuchida E, Nishide H (1997) Selective optical response to oxygen of membranes based on immobilized cobalt(II) porphyrins. Anal Chim Acta 338:119–125

    Article  Google Scholar 

  17. Radloff D, Matern C, Plaschke M, Simon D, Reichert J, Ache HJ (1996) Stability improvement of an optochemical heavy metal ion sensor by covalent receptor binding. Sensor Actuat B Chem 35:207–211

    Article  CAS  Google Scholar 

  18. Schäferling M, Bäuerle P (2004) Porphyrin-functionalized oligo- and polythiophenes. J Mater Chem 14:1132–1141

    Article  Google Scholar 

  19. Schäferling M, Bäuerle P (2001) Electrochemical properties of porphyrin-functionalized polythiophenes. Synth Met 119:289–290

    Article  Google Scholar 

  20. Hanks TW, Bergman B, Dillon P (2001) Design and synthesis of porphyrin-containing arrays on polypyrrole surfaces. Synth Met 121:1431–1432

    Article  CAS  Google Scholar 

  21. Ballarin B, Masiero S, Seeber R, Tonelli D (1998) Modification of electrodes with porphyrin-functionalised conductive polymers. J Electroanal Chem 449:173–180

    Article  CAS  Google Scholar 

  22. Okabayashi K, Ikeda O, Tamura H (1983) Electrochemical doping with meso-tetrakis(4-sulphonatophenyl)-porphyrincobalt of a polypyrrole film electrode. Chem Commun 684–685

    Google Scholar 

  23. Ikeda O, Okabayashi K, Yoshida N, Tamura H (1985) Spectroelectrochemical study of oxygen reduction at metalloporphyrin-doped polypyrrole film electrodes. J Electroanal Chem 191:157–174

    Article  CAS  Google Scholar 

  24. Huang S-C, Lin C-Y (2015) Reductive electropolymerization of N-methyl-3-pyridylethynyl-porphyrins. Chem Commun 51:519–521

    Article  CAS  Google Scholar 

  25. Gross AJ, Bucher C, Coche-Guerente L, Labbé P, Downard AJ, Moutet J-C (2011) Nickel (II) tetraphenylporphyrin modified surfaces via electrografting of an aryldiazonium salt. Electrochem Comm 13:1236–1239

    Article  CAS  Google Scholar 

  26. Picot M, Nicolas I, Poriel C, Rault-Berthelot J, Barriere F (2012) On the nature of the electrode surface modification by cathodic reduction of tetraarylporphyrin diazonium salts in aqueous media. Electrochem Comm 20:167–170

    Article  CAS  Google Scholar 

  27. Hebié S, Dimé AKD, Devillers CH, Lucas D (2015) Electrochemistry as an attractive and effective tool for the synthesis and immobilization of porphyrins on an electrode surface. Chem Eur J 21:8281–8289

    Article  CAS  Google Scholar 

  28. Boyle NM, Rochford J, Pryce MT (2010) Thienyl-Appended porphyrins: synthesis, photophysical and electrochemical properties, and their applications. Coord Chem Rev 254:77–102

    Article  CAS  Google Scholar 

  29. Bedioui F, Devynck J, Bied-Charreton C (1995) Immobilization of metalloporphyrins in electropolymerized films: design and applications. Acc Chem Res 28:30–36

    Article  CAS  Google Scholar 

  30. Deronzier A, Moutet JC (1996) Polypyrrole films containing metal complexes: syntheses and applications. Coord Chem Rev 147:339–371

    Article  CAS  Google Scholar 

  31. Walter MG, Rudine AB, Wamser CC (2010) Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phtalocyanines 14:759–792

    Article  CAS  Google Scholar 

  32. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204

    Article  CAS  Google Scholar 

  33. Segawa H, Nakayama N, Shimidzu T (1992) Electrochemical synthesis of one-dimensional Donor-Acceptor polymers containing oligothiophenes and phosphorus porphyrins. Chem Commun 10:784–786

    Google Scholar 

  34. Schenk H (1972) Crystal and molecular structure of bis-(2,2’-biphenylene)methane. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:625

    Google Scholar 

  35. Saragi TPI, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J (2007) Spiro compounds for organic optoelectronics. Chem Rev 107:1011–1065

    Article  CAS  Google Scholar 

  36. Pudzich R, Fuhrmann-Lieker T, Salbeck J (2006) Spiro compounds for organic electroluminescence and related applications. Adv Polym Sci 199:83–142

    Article  CAS  Google Scholar 

  37. Romain M, Tondelier D, Vanel J-C, Geffroy B, Jeannin O, Rault-Berthelot J, Métivier R, Poriel C (2013) Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging. Angew Chem Int Ed 52:14147–14151

    Article  CAS  Google Scholar 

  38. Romain M, Tondelier D, Geffroy B, Shirinskaya A, Jeannin O, Rault-Berthelot J, Poriel C (2015) Spiro-configured phenyl acridine thioxanthene dioxide as host for efficient PhOLEDs. Chem Commun 51:1313–1315

    Article  CAS  Google Scholar 

  39. Romain M, Thiery S, Shirinskaya A, Declairieux C, Tondelier D, Geffroy B, Jeannin O, Rault-Berthelot J, Métivier R, Poriel C (2015) Ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs. Angew Chem Int Ed 54:1176–1180

    Article  CAS  Google Scholar 

  40. Thirion D, Romain M, Rault-Berthelot J, Poriel C (2012) Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design. J Mater Chem 22:7149–7157

    Article  CAS  Google Scholar 

  41. Thiery S, Tondelier D, Declairieux C, Seo G, Geffroy B, Jeannin O, Rault-Berthelot J, Métivier R, Poriel C (2014) 9,9′-spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as host for green ans blue PhOLEDs. J Mater Chem C 2:4156–4166

    Article  CAS  Google Scholar 

  42. Schneider D, Rabe T, Riedl T, Dobbertin T, Kröger M, Becker E, Johannes H-H, Kowalski W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H (2005) An ultraviolet organic thin-film solid-state laser for biomarker applications. Adv Mater 17:31–34

    Google Scholar 

  43. Moreau F, Audebrand N, Poriel C, Moizan-Baslé V, Ouvry J (2011) A 9,9′-spirobifluorene based metal-organic framework: synthesis, structure analysis and gas sorption properties. J Mater Chem 21:18715–18722

    Article  CAS  Google Scholar 

  44. Pei J, Ni J, Zhou X-H, Cao X-Y, Lai Y-H (2002) Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis. J Org Chem 67:4924–4936

    Article  CAS  Google Scholar 

  45. Clarkson RG, Gomberg M (1930) Spirans with four aromatic radicals on the spiro carbon atom. J Am Chem Soc 52:2881–2891

    Article  CAS  Google Scholar 

  46. Poriel C, Ferrand Y, Juillard S, Le Maux P, Simonneaux G (2004) Synthesis and stereochemical studies of di and tetra 9,9′-spirobifluorene porphyrins: new building blocks for catalytic material. Tetrahedron 60:145–158

    Article  CAS  Google Scholar 

  47. Mattiello L, Fioravanti G (2001) Direct formylation of 9,9′-spirobifluorene: 2-carboxaldehyde-9,9′-spirobifluorene and 2,2′-dicarboxaldehyde-9,9′-spirobifluorene. Synth Comm 31:2645–2648

    Article  CAS  Google Scholar 

  48. Littler BJ, Miller MA, Hung C-H, Wagner RW, O’Shea DF, Boyle PD, Lindsey JS (1999) Refined synthesis of 5-substituted dipyrromethanes. J Org Chem 64:1391–1396

    Article  CAS  Google Scholar 

  49. Medforth CJ (2000) The porphyrin handbook, vol 5. Academic, San Diego, pp 1–80

    Google Scholar 

  50. Poriel C, Ferrand Y, Le Maux P, Simonneaux G (2003) Synthesis of new 9,9′-spirobifluorene porphyrins. Synlett 1:71–74

    Google Scholar 

  51. Arsenault GP, Bullock E, MacDonald SF (1960) Pyrromethanes and porphyrins therefrom. J Am Chem Soc 82:4384–4389

    Article  CAS  Google Scholar 

  52. Poriel C, Martail A, Simonneaux G (2007) Facial discrimination in monoarylporphyrins: synthesis and stereochemical behaviour of bis(ligated) monospirobifluorenylporphyrin ruthenium complexes. Inorg Chem Comm 10:627–630

    Article  CAS  Google Scholar 

  53. Osuka A, Ida K, Maruyama K (1989) Synthesis of a conformationally restricted porphyrin tetramer bridged by a 9,9′-spirobifluorene spacer. Chem Lett 18:741–744

    Article  Google Scholar 

  54. Wiehe A, Ryppa C, Senge MO (2002) A practical synthesis of meso-monosubstituted, b-unsubstituted porphyrins. Org Lett 4:3807–3809

    Article  CAS  Google Scholar 

  55. Borovkov VV, Lintuluoto JM, Inoue Y (1999) Convenient method for efficient iron and manganese ion insertion into various porphyrins under mild conditions. Synlett 1:61–62

    Article  Google Scholar 

  56. Poriel C, Ferrand Y, Le Maux P, Paul C, Rault-Berthelot J, Simonneaux G (2003) Poly(ruthenium carbonyl spirobifluorenylporphyrin): a new polymer used as a catalytic device for carbene transfer. Chem Commun 18:2308–2309

    Google Scholar 

  57. Zhao M, Ou S, Wu C-D (2014) Porous metal-organic frameworks for heterogeneous biominetic catalysis. Acc Chem Res 47:1199–1207

    Article  CAS  Google Scholar 

  58. Nakagaki S, Ferreira GKB, Ucoski GM, de Freitas Castro KAD (2013) Chemical reactions catalyzed by metalloporphyrin-based metal-organic frameworks. Molecules 18:7279–7308

    Google Scholar 

  59. Nakagaki S, Ferreira GKB, Marçal AL, Ciuffi KJ (2014) Metalloporphyrins immobilized on silica and modified silica as catalysts in heterogeneous processes. Curr Org Chem 11:67–88

    CAS  Google Scholar 

  60. Lu Z-L, Lindner E, Mayer HA (2002) Applications of Sol-Gel-Processed interphase catalysts. Chem Rev 102:3543–3578

    Article  CAS  Google Scholar 

  61. Brulé E, De Miguel YR (2006) Supported metalloporphyrin catalysts for alkene epoxidation. Org Biomol Chem 4:599–609

    Article  Google Scholar 

  62. Simonneaux G, Le Maux P, Ferrand Y, Rault-Berthelot J (2006) Asymmetric heterogeneous catalysis by metalloporphyrins. Coord Chem Rev 250:2212–2221

    Article  CAS  Google Scholar 

  63. Xia Q-H, Ge H-Q, Ye C-P, Liu Z-M, Su K-X (2005) Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev 105:1603–1662

    Article  CAS  Google Scholar 

  64. Geier GR III, Sasaki T (1999) Catalytic oxidation of alkenes with a surface-bound metalloporphyrin-peptide conjugate. Tetrahedron 55:1859–1870

    Article  CAS  Google Scholar 

  65. Geier GR III, Lybrand TP, Sasaki T (1999) On the absence of stereoselectivity in the catalytic oxidation of alkenes with a surface-bound metalloporphyrin-peptide conjugate. Tetrahedron 55:1871–1880

    Article  CAS  Google Scholar 

  66. Yu X-Q, Huang J-S, Yu W-Y, Che C-M (2000) Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J Am Chem Soc 122:5337–5342

    Article  CAS  Google Scholar 

  67. Halterman RL, Jan S-T (1991) Catalytic asymmetric epoxidation of unfunctionalized alkenes using the first D 4 -symmetric metallotetraphenylporphyrin. J Org Chem 56:5253–5254

    Article  CAS  Google Scholar 

  68. Halterman RL, Jan S-T, Nimmons HL, Standlee DJ, Khan MA (1997) Synthesis and catalytic reactivity of D 4 -symmetric dinorbornabenzene-derived metallotetraarylporphyrins. Tetrahedron 53:11257–11276

    Article  CAS  Google Scholar 

  69. Zhang JL, Liu YL, Che CM (2002) Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves (MCM-41 and MCM-48) as catalysts for asymmetric alkene epoxidation and cyclopropanation. Chem Commun 23:2906–2907

    Google Scholar 

  70. Ferrand Y, Daviaud R, Le Maux P, Simonneaux G (2006) Catalytic asymmetric oxidation of sulfide and styrene derivatives using macroporous resins containing chiral metalloporphyrins (Fe, Ru). Tetrahedron Asymmetry 17:952–960

    Article  CAS  Google Scholar 

  71. Ferrand Y, Le Maux P, Simonneaux G (2005) Macroporous chiral ruthenium porphyrin polymers: a new solid-phase material used as a device for catalytic asymmetric carbene transfer. Tetrahedron Asymmetry 16:3829–3836

    Article  CAS  Google Scholar 

  72. Ferrand Y, Poriel C, Le Maux P, Rault-Berthelot J, Simonneaux G (2005) Asymmetric heterogeneous carbene transfer catalyzed by optically active ruthenium spirobifluorenylporphyrin polymers. Tetrahedron Asymmetry 16:1463–1472

    Article  CAS  Google Scholar 

  73. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2008) Design and electropolymerization of a new optically active iron tetraspirobifluorenyl porphyrin. Synth Met 158:796–801

    Article  CAS  Google Scholar 

  74. Ferrand Y, Le Maux P, Simonneaux G (2004) Highly enantioselective synthesis of cyclopropylphosphonates catalyzed by Chiral Ruthenium Porphyrins. Org Lett 6:3211–3214

    Article  CAS  Google Scholar 

  75. Che C-M, Huang J-S, Lee F-W, Li Y, Lai T-S, Kwong H-L, Teng P-F, Lee W-S, Lo W-C, Peng S-M, Zhou Z-Y (2001) Asymmetric inter- and intramolecular cyclopropanation of alkenes catalyzed by chiral ruthenium porphyrins. Synthesis and crystal structure of a chiral metalloporphyrin carbene complex. J Am Chem Soc 123:4119–4129

    Article  CAS  Google Scholar 

  76. Wallace DM, Leung SH, Senge MO, Smith KM (1993) Rational tetraarylporphyrin syntheses: tetraarylporphyrins from the MacDonald route. J Org Chem 58:7245–7257

    Article  CAS  Google Scholar 

  77. Lindsey JS (2000) The Porphyrin Handbook, vol. 1. Academic press, Sans Diego, pp 46–118

    Google Scholar 

  78. Gottwald LK, Ullman EF (1969) Biphenyl-type atropisomerism as a probe for conformational rigidity of α, β, γ, δ-tetraarylporphines. Tetrahedron Lett 10:3071–3074

    Article  Google Scholar 

  79. Jaquinod L (2000) The porphyrin handbook, vol 1. Academic press, San Diego, pp 201–237

    Google Scholar 

  80. Collman JP, Gagne RR, Reed CA, Halbert TR, Lang G, Robinson WT (1975) “Picket Fence Porphyrins”. Synthetic models for oxygen binding hemoproteins. J Am Chem Soc 97:1427–1439

    Article  CAS  Google Scholar 

  81. Setsune J-I, Hashimoto M, Shiozawa K, Hayakawa J-Y, Ochi T, Masuda R (1998) Synthesis and atropisomerism of meso-tetraarylporphyrins with mixed meso-aryl groups having ortho-substituents. Tetrahedron 54:1407–1424

    Article  CAS  Google Scholar 

  82. Vicente MGH, Nurco DJ, Shetty SJ, Medforth CJ, Smith KM (2001) First structural characterization of a covalently bonded porphyrin–carborane system. Chem Commun 5:483–484

    Google Scholar 

  83. Nierengarten JF, Oswald L, Nicoud JF (1998) Dynamic cis/trans isomerisation in a porphyrin-fullerene conjugate. Chem Commun 15:1545–1546

    Google Scholar 

  84. Bonifazi D, Diederich F (2002) Strong intramolecular chromophore interactions in novel bis([60]fullerene)-oligoporphyrin nanoarrays. Chem Commun 18:2178–2179

    Google Scholar 

  85. Darling SL, Goh PKY, Bampos N, Feeder N, Montalti M, Prodi L, Johnson BFG, Sanders JKM (1998) Multimetallic porphyrin monomers. Chem Commun 18:2031–2032

    Google Scholar 

  86. Wagner RW, Johnson TE, Lindsey JS (1997) Investigation of the one-flask synthesis of porphyrins bearing meso-linked straps of variable length, rigidity, and redox activity. Tetrahedron 53:6755–6790

    Article  CAS  Google Scholar 

  87. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2004) Organic cross-linked electropolymers as supported oxidation catalysts: poly((tetrakis(9,9′-spirobifluorenyl)porphyrin)manganese) Films. Inorg Chem 43:5086–5095

    Article  CAS  Google Scholar 

  88. Shaw BL, Smithies AC (1968) Nuclear magnetic resonance studies on metal complexes. Part VI. Complexes of the type [IrX3(CO)L2](L = Cl, Br, or l; L = PMe2Ph or AsMe2Ph), including a study of iridium-chlorine stretching frequencies. J Chem Soc A, 2784–2787

    Google Scholar 

  89. Le Maux P, Bahri H, Simonneaux G (1991) Molecular recognition of racemic phosphines by a chiral ruthenium porphyrin. J Chem Soc Chem Commun 19:1350–1352

    Google Scholar 

  90. Medforth CJ, Haddad RE, Muzzi CM, Dooley NR, Jaquinod L, Shyr DC, Nurco DJ, Olmstead MM, Smith KM, Ma J-G, Shelnutt JA (2003) Unusual aryl—porphyrin rotational barriers in peripherally crowded porphyrins. Inorg Chem 42:2227–2241

    Article  CAS  Google Scholar 

  91. Young R, Chang CK (1985) Synthesis and characterization of blocked and ligand-appended hemes derived from atropisomeric meso-diphenylporphyrins. J Am Chem Soc 107:898–909

    Article  CAS  Google Scholar 

  92. Manka JS, Lawrence DS (1989) High yield synthesis of 5,15-diarylporphyrins. Tetrahedron Lett 30:6989–6992

    Article  CAS  Google Scholar 

  93. Le Maux P, Bahri H, Simonneaux G (1993) Synthesis and stereochemical studies of chiral ruthenium porphyrins. Tetrahedron 49:1401–1408

    Article  Google Scholar 

  94. Dirks JW, Underwood G, Matheson JC, Gust D (1979) Conformational dynamics of α, β, γ, δ-tetraarylporphyrins and their dications. J Org Chem 44:2551–2555

    Article  CAS  Google Scholar 

  95. Freitag RA, Whitten DG (1983) Thermal-induced and photoinduced atropisomerization of picket-fence porphyrins, metalloporphyrins, and diacids: a means for examining porphyrin solution properties. J Phys Chem 87:3918–3925

    Article  CAS  Google Scholar 

  96. Horhant D, Liang J-J, Virboul M, Poriel C, Alcaraz G, Rault-Berthelot J (2006) Dispirofluorene-indenofluorene (DSFIF): synthesis, electrochemical, and optical properties of a promising new family of luminescent materials. Org Lett 8:257–260

    Article  CAS  Google Scholar 

  97. Poriel C, Liang J-J, Rault-Berthelot J, Barrière F, Cocherel N, Slawin AMZ, Horhant D, Virboul M, Alcaraz G, Audebrand N, Vignau L, Huby N, Wantz G, Hirsch L (2007) Dispirofluorene-indenofluorene derivatives as new building blocks for blue organic electroluminescent devices and electroactive polymers. Chem Eur J 13:10055–10069

    Article  CAS  Google Scholar 

  98. Juillard S, Ferrand Y, Simonneaux G, Toupet L (2005) Molecular structure of simple mono- and diphenyl meso-substituted porphyrin diacids: influence of protonation and substitution on the distorsion. Tetrahedron 61:3489–3495

    Article  CAS  Google Scholar 

  99. Paul-Roth C, Rault-Berthelot J, Simonneaux G (2004) New polymers for catalytic carbene transfer: electropolymerization of tetrafluorenylporphyrinruthenium carbon monoxide. Tetrahedron 60:12169–12175

    Article  CAS  Google Scholar 

  100. Rault-Berthelot J, Simonet J (1985) The anodic oxidation of fluorene and some of its derivatives. Conditions for the formation of a new conducting polymer. J Electroanal Chem 182:187–192

    Article  CAS  Google Scholar 

  101. Rault-Berthelot J, Simonet J (1986) The polyfluorenes: a family of versatile electroactive polymers. (I) Electropolymerization of fluorenes. New J Chem 10:169–177

    CAS  Google Scholar 

  102. Rault-Berthelot J, Granger M-M, Mattiello L (1998) Anodic oxidation of 9,9′-spirobifluorene in CH2Cl2 + 0.2 M Bu4NBF4. Electrochemical behaviour of the derived oxidation product. Synth Met 97:211–215

    Article  CAS  Google Scholar 

  103. Rault-Berthelot J, Angely L, Delaunay J, Simonet J (1987) The polyfluorenes: a family of versatile electroactive polymers. (II) Poly(9,9-disubstituted fluorenes) existence of reversible p or n doping. New J Chem 11:487–494

    CAS  Google Scholar 

  104. Rault-Berthelot J, Orliac M-A, Simonet J (1988) The polyfluorenes: a family of versatile electroactive polymers. (III) Poly(9,9-dimethylfluorene) as an electrode modifier in the study of some systems known to be reversible on platinum. Electrochim Acta 33:811–823

    Article  CAS  Google Scholar 

  105. Poriel C, Ferrand Y, Le Maux P, Paul-Roth C, Simonneaux G, Rault-Berthelot J (2005) Anodic oxidation and physicochemical properties of various porphyrin-fluorenes or—spirobifluorenes: synthesis of new polymers for heterogeneous catalytic reactions. J Electroanal Chem 583:92–103

    Article  CAS  Google Scholar 

  106. Paul-Roth C, Rault-Berthelot J, Simonneaux G, Poriel C, Abdalilah M, Letessier J (2006) Electroactive films of poly(tetraphenylporphyrins) with reduced bandgap. J Electroanal Chem 597:19–27

    Article  CAS  Google Scholar 

  107. Kadish KM, Davis DG, Fuhrhop JH (1972) Unusual oxidation states of metalloporphyrins: octaethylporphinatosilver(III) perchlorate. Ang Chem Int Ed 11:1014–1016

    Article  CAS  Google Scholar 

  108. Deronzier A, Delvaux R, Limosin D, Latour JM (1992) Poly(pyrrole-metallotetraphenylporphyrin)-modified electrodes: Part 2. J Electroanal Chem 324:325–337

    Article  CAS  Google Scholar 

  109. Inisan C, Saillard J-Y, Guilard R, Tabard A, Le Mest Y (1998) Electrooxidation of porphyrin free bases: fate of the cation radical. New J Chem 22:823–830

    Article  CAS  Google Scholar 

  110. Paul-Roth C, Rault-Berthelot J, Simonneaux G, Letessier J, Bergamini J-F (2007) Selective anodic preparation of 1D or 2D electroactive deposits from 5,15-bis-(9H-fluoren-2-yl)-10,20-diphenyl porphyrins. J Electroanal Chem 606:103–116

    Article  CAS  Google Scholar 

  111. Rault-Berthelot J, Paul-Roth C, Poriel C, Juillard S, Ballut S, Drouet S, Simonneaux G (2008) Comparative behaviour of the anodic oxidation of mono-, di- and tetra-arylporphyrins: towards new electroactive materials with variable bandgaps. J Electroanal Chem 623:204–214

    Article  CAS  Google Scholar 

  112. Kadish KM, Royal G, Van Caemelbecke E, Gueletti L (2000) The porphyrin handbook, vol 9. Academic Press, San Diego, pp 1–220

    Google Scholar 

  113. Rillema DP, Nagle JK, Barringer LFJ, Meyer TJ (1981) Redox properties of metalloporphyrin excited states, lifetimes, and related properties of a series of para-substituted tetraphenylporphine carbonyl complexes of ruthenium(II). J Am Chem Soc 103:56–62

    Article  CAS  Google Scholar 

  114. Brown GM, Hopf FR, Ferguson JA, Meyer TJ, Whitten DG (1973) Metalloporphyrin redox chemistry. The effect of extraplanar ligands on the site of oxidation in ruthenium porphyrins. J Am Chem Soc 95:5939–5942

    Article  CAS  Google Scholar 

  115. Mu XH, Kadish KM (1990) Applications of thin-layer FTIR, UV-vis, and ESR spectroelectrochemistry for evaluating (TPP)Ru(CO) redox reactions in nonaqueous media. Langmuir 6:51–56

    Article  CAS  Google Scholar 

  116. Arasasingham RD, Bruice TC (1990) Reaction of hydroxide ion with manganese(III) tetramesitylporphyrin and the oxidation states of manganese tetramesitylporphyrins. Inorg Chem 29:1422–1427

    Article  CAS  Google Scholar 

  117. Mu XH, Schultz FA (1992) Methanol bonding to and electron-transfer reactivity of chloro(tetraphenylporphinato)manganese(III). Inorg Chem 31:3351–3357

    Article  CAS  Google Scholar 

  118. Phillippi MA, Shimomura ET, Goff HM (1981) Investigation of axial anionic ligand and porphyrin substituent effects on the oxidation of iron(III) porphyrins: porphyrin-centered vs. metal-centered oxidation. Inorg Chem 20:1322–1325

    Article  CAS  Google Scholar 

  119. Hapiot P, Lagrost C, Le Floch F, Raoult E, Rault-Berthelot J (2005) Comparative study of the oxidation of fluorene and 9,9-disubstituted fluorenes and their related 2,7′-dimers and trimer. Chem Mater 17:2003–2012

    Article  CAS  Google Scholar 

  120. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2003) Poly(9,9-spirobifluorene-manganese porphyrin): a new catalytic material for oxidation of alkenes by iodobenzene diacetate and iodosylbenzene. Chem Commun 9:1104–1105

    Google Scholar 

  121. Andrieux CP, Audebert P, Hapiot P, Savéant J-M (1991) Identification of the first steps of the electrochemical polymerization of pyrroles by means of fast potential step techniques. J Phys Chem 95:10158–10164

    Article  CAS  Google Scholar 

  122. Zotti G, Schiavon G, Berlin A, Pagani G (1993) Thiophene oligomers as polythiophene models. 1. Anodic coupling of thiophene oligomers to dimers: a kinetic investigation. Chem Mater 5:430–436

    Article  CAS  Google Scholar 

  123. MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  124. Rault-Berthelot J, Questaigne V, Simonet J (1989) A new device for the in situ UV-visible spectroelectrochemical study of polymeric films set on solid surfaces: application to the study of the electrochemical behaviour of polyfluorenes. New J Chem 13:45–52

    CAS  Google Scholar 

  125. Collman JP, Chien AS, Eberspacher TA, Brauman JI (2000) Multiple active oxidants in cytochrome P-450 model oxidations. J Am Chem Soc 122:11098–11100

    Article  CAS  Google Scholar 

  126. Battioni P, Renaud JP, Bartoli JF, Reina-Artiles M, Fort M, Mansuy D (1988) Monooxygenase-like oxidation of hydrocarbons by H2O2 catalyzed by manganese porphyrins and imidazole: selection of the best catalytic system and nature of the active oxygen species. J Am Chem Soc 110:8462–8470

    Article  CAS  Google Scholar 

  127. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2003) Syntheses of manganese and iron tetraspirobifluorene porphyrins as new catalysts for oxidation of alkenes by hydrogen peroxide and iodosylbenzene. Tetrahedron Lett 44:1759–1761

    Article  CAS  Google Scholar 

  128. Poriel C (2003) Thesis: les spirobifluorényleporphyrines: synthèse, electropolymérisation et propriétés catalytiques. Rennes 1 University, Rennes

    Google Scholar 

  129. Simonneaux G, Poriel C, Le Maux P, Rault-Berthelot J (2003) Spirometalloporphyrin materials for catalytic reactions. Progr Coordin Bioinorg Chem 77–82

    Google Scholar 

  130. Assis MD, Lindsay Smith JR (1998) Hydrocarbon oxidation with iodosylbenzene catalysed by the sterically hindered iron(III) 5-(pentafluorophenyl)-10,15,20-tris(2,6-dichlorophenyl)porphyrin in homogeneous solution and covalently bound to silica. J Chem Soc Perkin Trans 2:2221–2226

    Google Scholar 

  131. Campestrini S, Meunier B (1992) Olefin epoxidation and alkane hydroxylation catalyzed by robust sulfonated manganese and iron porphyrins supported on cationic ion-exchange resins. Inorg Chem 31:1999–2006

    Article  CAS  Google Scholar 

  132. Simonneaux G, Le Maux P (2002) Optically active ruthenium porphyrins: chiral recognition and asymmetric catalysis. Coord Chem Rev 228:43–60

    Article  CAS  Google Scholar 

  133. Che C-M, Huang J-S (2002) Ruthenium and osmium porphyrin carbene complexes: synthesis, structure, ad connection to the metal-mediated cyclopropanation of alkenes. Coord Chem Rev 231:151–164

    Article  CAS  Google Scholar 

  134. Simonneaux G, Galardon E, Paul-Roth C, Gulea M, Masson S (2001) Ruthenium-porphyrin-catalyzed carbenoid addition to allylic compounds: application to [2, 3]-sigmatropic rearrangements of ylides. J Organomet Chem 617–618:360–363

    Article  Google Scholar 

Download references

Acknowledgements

CP and JRB would like to thank all their co-workers involved in this research program between 2000 and 2006 and especially: Dr Yann Ferrand, Dr Paul Le Maux and Dr Gérard Simonneaux (Rennes). This research was partially supported by CNRS and University of Rennes 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Rault-Berthelot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rault-Berthelot, J., Poriel, C. (2016). Spirobifluorenyl-Porphyrins and their Derived Polymers for Homogeneous or Heterogeneous Catalysis. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_9

Download citation

Publish with us

Policies and ethics