Skip to main content

Electroanalysis of Hydrazine and Related Compounds by Oxidation Promoted with MN4 Macrocyclics

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

Hydrazines and related compounds are hazardous chemicals widely used in the laboratory and in industry. Hydrazine, a colorless liquid, is considered a human carcinogen. This substance is a powerful reducing agent and is employed in many industrial applications as a reagent, catalyst, and corrosion inhibitor. Hydrazine and its derivatives have been used as rocket fuels and as oxygen scavengers in boilers. Other uses include the manufacture of metal films, blowing agents for plastics, photographic chemicals, insecticides, explosives, and pharmaceuticals. The compounds have been used as intermediates in the synthesis of different types of drugs, including nifuroxazide, carbidopa, hydralazine, dihydralazine, isoniazid, and iproniazid. Hydrazine itself, in the form of the sulfate salt, has been used in the treatment of tuberculosis, sickle cell anemia, and various chronic illnesses. The determination of hydrazine and its alkyl substituted analogs is challenging because of their volatility, low molecular weight, high polarity, tendency to oxidize, lack of chromophores, and (in the case of hydrazine) the absence of any carbon atoms. Nonetheless, the quantitative determination of these compounds is of great analytical importance, due to their multiple applications and their recognition as carcinogenic and hepatotoxic agents, and has attracted the interest of many researchers. The analytical methods that are commonly used for hydrazine and its alkyl substituted analogs include high performance liquid chromatography (HPLC), gas chromatography (GC), ion chromatography (IC), thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), spectrophotometry, capillary electrophoresis (CE), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). These conventional techniques are sensitive, reliable, and precise. However, despite their advantages, they require skilled analysts and the use of expensive instrumentation. They are also time-consuming and difficult to adapt for use in field analyses. An alternative is to use simple, inexpensive methods based on the electrochemistry of N4 macrocyclic complexes. These complexes offer many advantages: they are cheap and easy to synthesize, show good stability at different pH, and can catalyze a myriad of electrochemical reactions. Tuning of the formal potential of the active site can be achieved by placing appropriate groups on the ligand in order to alter the electron density of the metal center. This chapter provides a comprehensive discussion of various aspects of hydrazine and related compounds, focusing on their analysis using electrochemical methods based on N4 macrocyclic complexes. The catalytic properties of MN4 metallomacrocyclics in the oxidation of hydrazine and related compounds are discussed, together with the different factors affecting catalytic activity, such as the effects of the central metal and the ligand on hydrazine electrooxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schessl HW (1995) In: Othmer K (ed) Encyclopedia of chemical technology, 4th ed, vol 13. Wiley/Interscience, New York, p. 560

    Google Scholar 

  2. Pingarrón JM, Hernández IO, González-Cortés A, Yáñez-Sedeño P (2001) Carbon fibre microelectrodes modified with rhodium for the electrocatalytic determination of hydrazine. Anal Chim Acta 439:281–290

    Article  Google Scholar 

  3. Vernot EH, MacEwen JD, Bruner RH, Haus CC, Kinkead ER (1985) Long-term inhalation toxicity of hydrazine. Fundam Appl Toxicol 5:1050–1064

    Article  CAS  Google Scholar 

  4. Yamazaki SI, Ioroi T, Tanimoto K, Yasuda K, Asazawa K, Yamaguchi S, Tanaka H (2012) Electrochemical oxidation of hydrazine derivatives by carbon-supported metalloporphyrins. J Power Sources 204:79–84

    Article  CAS  Google Scholar 

  5. Afkhami A, Zarei AR (2004) Simultaneous spectrophotometric determination of hydrazine and phenylhydrazine based on their condensation reactions with different aromatic aldehydes in micellar media using H-point standard addition method. Talanta 62:559–565

    Article  CAS  Google Scholar 

  6. Ensafi AA, Rezaei B (1998) Flow injection determination of hydrazine with fluorimetric detection. Talanta 47:645–649

    Article  CAS  Google Scholar 

  7. Liu B, He Y, Duan C, LiN Cui H (2011) Platinum nanoparticle-catalyzed lucigenin-hydrazine chemiluminescence. J Photoch Photobio A Chem 217:62–67

    Article  CAS  Google Scholar 

  8. Mori M, Tanaka K, Xu Q, Ikedo M, Taoda H, Hu W (2004) Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. J Chromatogr A 1039:135–139

    Article  CAS  Google Scholar 

  9. Li X, Zhang S, Sun C (2003) Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J Electroanal Chem 553:139–145

    Article  CAS  Google Scholar 

  10. Zare HR, Habibirad AM (2006) Electrochemistry electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. J Solid State Electrochem 10:348–359

    Article  CAS  Google Scholar 

  11. Revenga-Parra M, Lorenzo E, Pariente F (2005) Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine. Sens Actuators B107:678–687

    Article  CAS  Google Scholar 

  12. Salimi A, Abdi K (2004) Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step solgel technique: application to amperometric detection of hydrazine and hydroxyl amine. Talanta 63:475–483

    Article  CAS  Google Scholar 

  13. Pournaghi-Azar MH, Nahalparvari H (2005) Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode. J Electroanal Chem 583:307–317

    Article  CAS  Google Scholar 

  14. Razmi H, Pournaghi-Azar MH (2002) Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine. J Solid State Electrochem 6:126–133

    Article  CAS  Google Scholar 

  15. Abbaspour A, Kamyabi MA (2005) Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. J Electroanal Chem 576:73–83

    Article  CAS  Google Scholar 

  16. Zhang WD, Chen H, Luo QM (2002) Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 58:529–534

    Article  Google Scholar 

  17. Ensafi AA, Mirmomtaz E (2005) Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J Electroanal Chem 583:176

    Article  CAS  Google Scholar 

  18. Marrazza G, Chianella I, Mascini M (1999) Disposable DNA electrochemical biosensors for environmental monitoring. Anal Chim Acta 387:297–307

    Article  CAS  Google Scholar 

  19. Salami A, Hallaj T (2004) Adsorption and reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode: application for the amperometric detection of hydrazine. Electroanalysis 16:1964–1971

    Article  CAS  Google Scholar 

  20. Ardiles P, Trollund E, Isaacs M, Armijo F, Canales JC, Aguirre MJ (2001) Electrocataltyic oxidation of hydrazine at polymeric iron-tetraaminophthalocyanine modified electrodes. J Mol Catal A: Chem 165:169–175

    Article  CAS  Google Scholar 

  21. Mehrdad E (2003) Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode. Can J Chem 81:161–168

    Article  Google Scholar 

  22. Korfhage KM, Ravichandran K, Baldwin RP (1984) Phthalocyanine contain chemically modified electrode for electrochemical detection in liquid chromatography/flow injection system. Anal Chem 56:1514–1517

    Article  CAS  Google Scholar 

  23. Wang J, Golden T, Li R (1988) Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity. Anal Chem 60:1642–1945

    Article  CAS  Google Scholar 

  24. Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–168

    Google Scholar 

  25. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  26. Pratap ABP (1999) The Phthalocyanines—molecules of enduring value; a two-dimensional analysis of redox potentials read. J Porphyr Phthalocyanines 3:488–499

    Article  Google Scholar 

  27. Vilazi SL, Nyokong T (2001) Voltammetric determination of nitric oxide on cobalt phthalocyanine modified microelectrodes. J Electroanal Chem 512:56–63

    Article  Google Scholar 

  28. Steinbach F, Zobel M (1973) Catalytic decomposition of hydrazine vapor on monomeric β-copper phthalocyanine. Z Phys Chem 87:142–150

    CAS  Google Scholar 

  29. Steinbach F, Zobel M (1979) Infrared spectroscopic investigation of the formation of adducts of Fe-phthalocyanine with hydrazine and ammonia. J Chem SocFaraday Trans 75(1979):2587–2593

    Article  CAS  Google Scholar 

  30. Zagal JH, Lira S, Ureta-Zanartu S (1986) A mechanistic study of the electro-oxidation of hydrazine on phthalocyanines of VO, Cr, Mn, Ni, Cu and Zn attached to grafite electrodes. J Electroanal Chem 210:95–110

    Article  CAS  Google Scholar 

  31. Hinman AS, Pavelich BJ, McGarty K (1988) In situ Fourier-transform infrared spectroelectrochemical studies of the oxidation of some tetraphenylporphyrin complexes. Can J Chem 66:1589–1595

    Article  CAS  Google Scholar 

  32. Steinbach F, Zobel M (1978) Infrared spectroscopic investigation of the formation of adducts of Fe-phthalocyanine with hydrazine and ammonia. J Chem Soc, Faraday Trans 1(75):2587–2593

    Google Scholar 

  33. Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–168

    Article  CAS  Google Scholar 

  34. Sun C, Sun Y, Zhang X, Zang X, Jiang D, Gao Q, Xu H, Shen J (1996) Fabrication of a multilayer film containing cobalt phthalocyanine on the surface of a gold electrode based on electrostatic interaction and its application as an amperometric sensor of hydrazine. Thin Solid Films 288:291–295

    Article  CAS  Google Scholar 

  35. Peng QY, Guarr TF (1994) Electro-oxidation of hydrazine at electrodes modified with polymeric cobalt phthalocyanine. Electrochim Acta 39:2629–2632

    Article  CAS  Google Scholar 

  36. Bennett JE, Malinski T (1991) Conductive polymeric porphyrin films: application in the electrocatalytic oxidation of hydrazine. Chem Mater 3:490–495

    Article  CAS  Google Scholar 

  37. Jiang J, Bian Y, Furuya F, Liu W, Choi M, Kobayashi M, Li HW, Yang Q, Ng T, Mak DKP (2001) Synthesis, structure, spectroscopic properties, and electrochemistry of rare earth sandwich compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. Chem Eur J 7:5059–5069

    Article  CAS  Google Scholar 

  38. Kazemi SH, Hosseinzadeh B, Zakavi S (2015) Electrochimical fabrication of conducting polymer of Ni-porphyrin as nano-structured electrocatalyst for hydrazine oxidation. Sens Actuators B Chem 210:343–348

    Article  CAS  Google Scholar 

  39. Guerra SV, Kubota LT, Xavier CR, Nakagaki S (1999) Experimental optimization of hydrazine detection in FIA System using an electrode modified with copper porphyrin zeolite. Anal Sci 15:1231–1234

    Article  CAS  Google Scholar 

  40. Antoniadau S, Jannakoudakis AD, Theodoridou E (1989) Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine. Synth Met 30:295–304

    Article  Google Scholar 

  41. Pang DW, Deng BH, Wang ZL (1994) Electrocatalysis of metalloporphyrins-Part 14. Electro-oxidation of hydrazine catalyzed by water-soluble tetrakis (4-trimethylammoniumphenyl) porphyrin and its cobalt complex. Electrochim Acta 39:847–851

    Article  CAS  Google Scholar 

  42. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Google Scholar 

  43. Tasca F, Recio FJ, Venegas R, Geraldo DA, Sancy M, Zagal JH (2014) Linear versus volcano correlations for the electrocatalytic oxidation of hydrazine on graphite electrodes modified with MN4 macrocyclic complexes. Electrochim Acta 140:314–319

    Article  CAS  Google Scholar 

  44. Recio FJ, Geraldo D, Cañete P, Zagal JH (2013) Matching the catalyst Co(II)/(I) formal potential of a macrocyclic complex to the reversible potential of hydrazine oxidation for the highest activity. ECS Electrochem Lett 4:H1–H3

    Google Scholar 

  45. Zagal JH, Sancy M, Paez M (2013) Unusual behavior of perflurotinated cobalt phthalocyanine compared to unsubstituted cobalt phthalocyanine for the electrocatalytica oxidation of hydrazine. Effect of the surface concentration of the catalyst on the graphite surface. J Serb Chem Soc 12:2039–2052

    Article  CAS  Google Scholar 

  46. Recio FJ, Cañete P, Tasca F, Linares-Flores C, Zagal JH (2013) Tuning the Fe(II)/(I) formal potential of the FeN4 catalysts adsorbed on graphite electrodes to the reversible potential of the reaction for maximum activity: hydrazine oxidation. Electrochem Commun 30:34–37

    Article  CAS  Google Scholar 

  47. Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23–J26

    Article  CAS  Google Scholar 

  48. Appleby AJ (1983) In: Conway BE, Bockris JOM, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, 2, Plenum, New York, pp 173–239

    Google Scholar 

  49. Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15:1811–1832

    Article  CAS  Google Scholar 

  50. Trasatti S (2003) Handbook of fuel cells, fundamentals technology and applications. Wiley, Hoboken, pp 88–92

    Google Scholar 

  51. Linares-Flores C, Espinoza-Vergara J, Zagal JH, Arratia-Perez R (2014) Reactivity trend of Fe phthalocyanines confined on graphite electrode in terms of donor-acceptor intermolecular hardness: linear versus volcano correlations. Chem Phys Lett 614:176–180

    Article  CAS  Google Scholar 

  52. Işci U, Dumoulin F, Ahsen V, Sorokin AB (2010) Preparation of N-bridged diiron phthalocyanines bearing bulky or small electron-withdrawingsubstituents. J Porphyr Phthalocya 14:324–334

    Article  CAS  Google Scholar 

  53. Villagran M, Caruso F, Rossi M, Zagal JH, Costamagna J (2010) Substituent effects on structural, electronic, and redox properties of bis(N-alkyl-2-oxy-1-naphthaldiminato)copper(II) complexes revisited—inequivalence in solid-and solution-state structures by electronic spectroscopy and X-ray diffraction explained by DFT. Eur J Inorg Chem 1999:1373–1379

    Article  CAS  Google Scholar 

  54. Caro CA, Zagal JH, Bedioui F (2003) Electrocatalytic activity of substituted metal-lophthalocyanines adsorbed on vitreous carbon electrode for nitric oxidation. J Electrochem Soc 150:E95–F103

    Article  CAS  Google Scholar 

  55. Geraldo D, Linares C, Chen Y-Y, Ureta-Zañartu S, Zagal JH (2002) Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem Commun 4:182–187

    Article  CAS  Google Scholar 

  56. Dantas LMF, dos Reis AP, Tanaka SMCN, Zagal JH, Chen YY, Tanaka AA (2008) Electrocatalytic oxidation of hydrazine in alkaline media promoted by iron tetrapyridinoporphyrazine adsorbed on graphite surface. J Braz Chem Soc 19:720–726

    Article  CAS  Google Scholar 

  57. Zagal JH, Recio FJ, Gutierrez CA, Zuñiga C, Páez MA, Caro CA (2014) Towards a unied way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction. Electrochem Commun 41:24–26

    Article  CAS  Google Scholar 

  58. Hou K, Huang L, Qi Y, Huang C, Pan H, Du M (2015) A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. Mater Sci Eng C 49:640–647

    Article  CAS  Google Scholar 

  59. Alvarez L, Fall F, Belhboub A, Le Parc R, Almadori Y, Arenal R, Aznar R, Dieudonné-George P, Hermet P, Rahmani A, Jousselme B, Campidelli S, Cambedouzou J, Saito T, Bantignies JL (2015) One-dimensional molecular crystal of phthalocyanine confined into single-walled carbon nanotubes. J Phys Chem C 119:5203–5210

    Google Scholar 

  60. Huang J, Wu Y, Wang D, Ma Y, Yue Z, Lu Y, Zhang M, Zhang Z, Yang P (2015) Silicon phthalocyanine covalently functionalized N-doped ultrasmall reduced graphene oxide decorated with Pt nanoparticles for hydrogen evolution from water. ACS Appl Mater Inter 7:3732–3741

    CAS  Google Scholar 

  61. Boni AC, Wong A, Dutra RAF, Sotomayor MDPT (2011) Cobalt phthalocyanine as a biomimetic catalyst in the amperometric quantification of dipyrone using FIA. Talanta 85:2067–2073

    Article  CAS  Google Scholar 

  62. Balasoiu SC, Staden IS, Staden JF, Pruneanu S, Radu GL (2010) Carbon and diamond paste microelectrodes based on Mn(III) porphyrins for the determination of dopamine. Anal Chim Acta 668:201–207

    Article  CAS  Google Scholar 

  63. Cardoso WS, Gushikem Y (2005) Electrocatalytic oxidation of nitrite on a carbon paste electrode modified with Co(II) porphyrin adsorbed on SiO2/SnO2/Phosphate prepared by the sol-gel method. J Electroanal Chem 583:300–306

    Article  CAS  Google Scholar 

  64. Sáfar GAM, Martins DCS, Freitas-Silva GD, Rebouças JS, Idemori YM, Righi A (2014) Interactions of porphyrins and single walled carbon nanotubes: a fine duet. Synth Met 193:64–70

    Article  CAS  Google Scholar 

  65. Bassiouk M, Basiuk VA, Basiuk EV, Álvarez-Zauco E, Martínez-Herrera M, Rojas-Aguilar A, Puente-Lee I (2013) Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl Surf Sci 275:168–177

    Google Scholar 

  66. Rayati S, Bohloulbandi E (2014) Multi-wall carbon nanotube-supported manganese(III) porphyrin: an efficient and reusable catalyst for the oxidation of alkenes with H2O2 under ultrasonic irradiation. Comp Rendus Chim 17:62–68

    Article  CAS  Google Scholar 

  67. Rebis T, Lijewski S, Nowicka J, Popenda L, Sobotta L, Jurga S, Mielcarek J, Milczarek G, Goslinski T (2015) Electrochemical properties of metallated porphyrazines possessing isophthaloxybutylsulfanyl substituents: application in the electrocatalytic oxidation of hydrazine. Electrochim Acta 168:216–224

    Article  CAS  Google Scholar 

  68. El-Khouly ME, Ito O, Smith PM, D’Souza F (2004) Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. J Photoch Photobio C: Photochem Rev 5:79–104

    Article  CAS  Google Scholar 

  69. Wu L, Feng L, Ren J, Qu X (2012) Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron 34:57–62

    Article  CAS  Google Scholar 

  70. Jiang L, Cui L, He X (2015) Cobalt-porphyrin noncovalently functionalized graphene as nonprecious-metal electrocatalyst for oxygen reduction reaction in an alkaline medium. J Solid State Electrochem 19:497–506

    Article  CAS  Google Scholar 

  71. Mashazi N, Ozoemena KI, Maree DM, Nyokong T (2006) Self-assembled monolayers (SAMs) of cobalt tetracarboxylic acidchloride phthalocyanine covalently attached onto a preformed mercaptoethanol SAM: a novel method. Electrochim Acta 51:3489–3494

    Article  CAS  Google Scholar 

  72. Ozoemena K, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–168

    Article  CAS  Google Scholar 

  73. Ozoemena K, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  74. Ozoemena K, Nyokong T (2005) Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: applications to electrocatalytic oxidation and detection of thiocyanate. J Electroanal Chem 579:283–289

    Article  CAS  Google Scholar 

  75. Hutchison JE, Postlethwaite TA, Murray RW (1993) Molecular films of thiol-derivatized tetraphenylporphyrins on gold: film formation and electrocatalytic dioxygen reduction. Langmuir 9:3277–3283

    Article  CAS  Google Scholar 

  76. Zak J, Yuan H, Ho M, Woo LK, Porter MD (1993) Thiol-derivatized metalloporphyrins: monomolecular films for the electrocatalytic reduction of dioxygen at gold electrodes. Langmuir 9:2772–2774

    Article  CAS  Google Scholar 

  77. Postlethwaite TA, Hutchison JE, Hathcock KW, Murray RW (1995) Optical, electrochemical, and electrocatalytic properties of self-assembled thiol-derivatized porphyrins on transparent gold films. Langmuir 11:4109–4116

    Article  CAS  Google Scholar 

  78. Cook MJ (1999) Phthalocyanines thin films. Pure Appl Chem 71:2145–2151

    Article  CAS  Google Scholar 

  79. Sampath S, Somashekarappa MP (2002) Orientation dependent electrocatalysis using self-assembled molecular films. Chem Commun 2002:1262–1263

    Google Scholar 

  80. Cook MJ, Hersans R, McMurdo J, Russell DA (1996) Self-assembled monolayers of phthalocyanine derivatives on glass and silicon. J Mater Chem 6:49–154

    Article  Google Scholar 

  81. Li Z, Lieberman M (1999) In: Blitz JP, Little CB (eds) Fundamental and applied aspects of chemically modified surfaces. Royal Society of Chemistry. Lettchworth, pp 24–35

    Google Scholar 

  82. Li Z, Lieberman M, Hill W (2001) XPS and SERS study of silicon phthalocyanine monolayers: umbrella vs octopus design strategies for formation of oriented SAMs. Langmuir 17:4887–4894

    Article  CAS  Google Scholar 

  83. Nyokong T, Bedioui F (2006) Self assembled monolayers and electropolymerized thin films of phthalocyanines as molecular materials for electroanalysis. J Porph Phthal 10:1101–1115

    Article  CAS  Google Scholar 

  84. Salomon E, Angot T, Papageorgiou N, Layet JM (2005) Self-assembled monolayer of tin-phthalocyanine on InSb(0 0 1)-(4 × 2)/c(8 × 2). Surf Sci 596:74–81

    Article  CAS  Google Scholar 

  85. Kalyuzhny G, Vaskevich A, Ashkenasy G, Shanzer A, Rubinstein I (2000) UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J Phys Chem B 104:8238–8244

    Article  CAS  Google Scholar 

  86. Ruggieri C, Rangan S, Bartynski RA, Galoppini E (2015) Zinc(II) tetraphenylporphyrin adsorption on Au(111): an interplay between molecular self-assembly and surface stress. J Phys Chem C 119:6101–6110

    Article  CAS  Google Scholar 

  87. Otte FL, Lemke S, Schütt C, Krekiehn NR, Blitz JP, Little CB, Jung U, Magnussen OM, Herges R (2014) Ordered monolayers of free-standing porphyrins on gold. J Am Chem Soc 136:11248−11251

    Google Scholar 

  88. Pailleret A, Bedioui F (2006) In: Zagal JH, Bedioui JH, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 363–438

    Chapter  Google Scholar 

  89. Yeh CY, Cheng SH (2003) Electropolymerization of metalloporphyrin films for catalytic reduction of dioxygen. Tamkang J Sci Eng 6:81–86

    Google Scholar 

  90. Bedioui F, Devynck J, Bied-Charreton C (1995) Immobilization of metalloporphyrins in electropolymerized films: design and applications. Acc Chem Res 28:30–36

    Article  CAS  Google Scholar 

  91. Balasubramaniam E, Ramachandraiah G, Natarajan P, Bied-Charreton C, Devynck J, Bedioui F (1995) Electrochemical preparation of anthraquinone and zinc porphyrin coated electrodes: redox activity and film stability. J Mater Chem 5:625–629

    Article  CAS  Google Scholar 

  92. Bedioui F, Trevin S, Devynck J (1996) You have full text access to this content Chemically modified microelectrodes designed for the electrochemical determination of nitric oxide in biological systems. Electroanalysis 1996:1085–1091

    Article  Google Scholar 

  93. Trévin S, Bedioui F, Devynck J (1996) New electropolymerized nickel porphyrin films. Application to the detection of nitric oxide in aqueous solution. J Electroanal Chem 408:261–265

    Article  Google Scholar 

  94. Bedioui F, Devynck J, Bied-Charreton C (1996) Electropolymerized manganese porphyrin films as catalytic electrode materials for biomimetic oxidations with molecular oxygen. J Mol Catalysis A: Chem 113:3–11

    Article  CAS  Google Scholar 

  95. Deronzier A, Moutet JC (1989) Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications. Acc Chem Res 22:249–255

    Article  CAS  Google Scholar 

  96. Curran D, Grimshaw J, Perera SD (1991) Poly(pyrrole) as a support for electrocatalytic materials. Chem Soc Rev 20:391–404

    Article  CAS  Google Scholar 

  97. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  98. ElzingA Van Der, Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233:113–123

    Article  Google Scholar 

  99. Jiang R, Dong S (1988) Research on chemically modified electrodes: catalytic reduction of dioxygen at a cobalt phthalocyanine-doped polyaniline film electrode. J Electroanal Chem 246:101–117

    Article  CAS  Google Scholar 

  100. Choi CS, Tachikawa H (1990) Electrochemical behavior and characterization of polypyrrole-copper phthalocyanine tetrasulfonate thin film: cyclic voltammetry and in situ Raman spectroscopic investigation. J Am Chem Soc 112:1757–1768

    Article  CAS  Google Scholar 

  101. Damos FS, Luz RCS, Tanaka AA, Kubota LT (2006) Investigations of doped polyaniline nanometric films by using electrochemical surface plasmon resonance. J Electroanal Chem 589:70–81

    Article  CAS  Google Scholar 

  102. Mugadza T, Nyokong T (2010) Facile electrocatalytic oxidation of diuron on polymerized nickel hydroxo tetraamino-phthalocyanine modified glassy carbon electrodes. Talanta 81:1373–1379

    Article  CAS  Google Scholar 

  103. Chauke V, Matemadombo F, Nyokong T (2010) Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges. J Hazard Mat 178:180–186

    Article  CAS  Google Scholar 

  104. Ozoemena K, Westbroek P, Nyokong T (2002) Cyclic voltammetric studies of octabutylthiophthalocyaninatocobalt(II) and its selfassembled monolayer (SAM) on gold electrode. J Porphrir Phthalocya 6:98–106

    Article  CAS  Google Scholar 

  105. Ozoemena K, Nyokong T (2003) Electrochemical behaviour of thiol-derivatised zinc (II) phthalocyanine complexes and their self-immobilised films at gold electrodes. Microchem J 75:241–247

    Article  CAS  Google Scholar 

  106. Brown KL, Mottola HA (1998) Voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized films based on Cu(II/I)−4,9,16,23-Tetraaminophthalocyanine. Langmuir 14:3411–3417

    Article  CAS  Google Scholar 

  107. Tse YH, Janda P, Lam H, Lever ABP (1995) Electrode with electropolymerized tetraaminophthalocyanatocobalt(II) for detection of sulfide ion. Anal Chem 67:981

    Article  CAS  Google Scholar 

  108. Obirai J, Nyokong T (2004) Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochim Acta 49:1417–1428

    Article  CAS  Google Scholar 

  109. Ramírez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre MJ (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 14:540–545

    Article  Google Scholar 

  110. Rodrigues NP, Obirai J, Nyokong T, Bedioui F (2005) Electropolymerized pyrrole-substituted manganese phthalocyanine films for the electroassisted biomimetic catalytic reduction of molecular oxygen. Electroanalysis 17:186–192

    Article  CAS  Google Scholar 

  111. Elzing A, Van Der Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233:113–123

    Article  CAS  Google Scholar 

  112. Brown KL, Mottola HA (1998) Voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized films based on Cu(II/I)−4,9,16,23-Tetraaminophthalocyanine. Langmuir 14:3411–3417

    Article  CAS  Google Scholar 

  113. Trollund E, Ardiles P, Aguire MJ, Xe S, Biaggio R, Rocha-Filho RC (2000) Spectroelectrochemical and electrical characterization of poly(cobalt–tetraaminophthalocyanine)-modified electrodes: electrocatalytic oxidation of hydrazine. Polyhedron 19:2303–2312

    Article  CAS  Google Scholar 

  114. Ramirez G, Trollund E, Canales JC, Canales MJ, Armijo F, Aguirre MJ (2001) Effect of the conditions of electropolymerization on the electrocatalytic response of non-metalled-poly-tetraaminophthalocyanine-modified electrodes toward the reduction of oxygen. Bol Soc Chil Quim 46:247–255

    CAS  Google Scholar 

  115. Guerra SV, Xavier CR, Nakagaki S, Kubota LT (1998) Electrochemical behavior of copper Porphyrin synthesized into zeolite cavity: a sensor for hydrazine. Electroanalysis 10:462–466

    Article  CAS  Google Scholar 

  116. Peng QY, Guarr TF (1994) Electro-oxidation of hydrazine at electrodes modified with polymeric cobalt phthalocyanine. Electrochim Acta 39:2629–2632

    Article  CAS  Google Scholar 

  117. Trollund E, Ardiles P, Aguirre MJ, Biaggio SR, Rocha-Filho RC (2000) Spectroelectrochemical and electrical characterization of poly(cobalt–tetraaminophthalocyanine)-modified electrodes: electrocatalytic oxidation of hydrazine. Polyhedron 19:2303–2312

    Article  CAS  Google Scholar 

  118. Isaacs M, Aguirre MJ, Toro-Labbe A, Costamagna J, Paez M, Zagal JH (1998) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Electrochim Acta 43:1821–1827

    Article  CAS  Google Scholar 

  119. Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–168

    Article  CAS  Google Scholar 

  120. Rebis T, Lijewski S, Nowicka J, Popenda L, Sobotta L, Jurga S, Mielcarek J, Milczarek G, Goslinski T (2015) Electrochemical properties of metallated porphyrazines possessing isophthaloxybutylsulfanyl substituents: application in the electrocatalytic oxidation of hydrazine. Electrochim Acta 168:216–224

    Article  CAS  Google Scholar 

  121. Kazemi SH, Hosseinzadeh B, Zakavi SH (2015) Electrochemical fabrication of conducting polymer of Ni-porphyrin as nano-structured electrocatalyst for hydrazine oxidation. Sens Actuators B 210:343–348

    Article  CAS  Google Scholar 

  122. Muthukumar P, John SA (2014) Efficient oxidation of hydrazine using amine-functionalized cobalt and nickel porphyrin-modified electrodes. J Solid State Electrochem 18:2393–2400

    Article  CAS  Google Scholar 

  123. Muthukumar P, John SA (2014) Synergistic effect of gold nanoparticles and amine functionalized cobalt porphyrin on electrochemical oxidation of hydrazine. New J Chem 38:3473–3479

    Article  CAS  Google Scholar 

  124. Quintino MSM, Araki K, Toma HE, Angnes L (2008) New hydrazine sensors based on electropolymerized meso-tetra(4-sulphonatephenyl)porphyrinate manganese(III)/silver nanomaterial. Talanta 74:730–735

    Article  CAS  Google Scholar 

  125. Ozoemena KI (2006) Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine–cobalt (II) tetraphenylporphyrin (CoPc-(CoTPP)4) supramolecular complex. Sensors 6:874–891

    Article  CAS  Google Scholar 

  126. Chen SM, Lu MF, Lin KÇ (2005) The interaction of water-soluble manganese porphyrins with DNA films and their electrocatalytic properties with hydrazine. Electroanalysis 17:847–856

    Article  CAS  Google Scholar 

  127. Fujiwara ST, Gushikem Y, Pessoa CA, Nakagaki S (2005) Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2/Al2O3 surface. Electroanalysis 17:783–788

    Article  CAS  Google Scholar 

  128. Li X, Zhang S, Sun C (2003) Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J Electroanal Chem 553:139–145

    Article  CAS  Google Scholar 

  129. Siangproh W, Chailapakul O, Laocharoensuk R, Wang J (2005) Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta 67:903–907

    Article  CAS  Google Scholar 

  130. Sun C, Sun Y, Zhang X, Zhang X, Jiang D, Gao Q, Xu H, Shen J (1996) Fabrication of a multilayer film containing cobalt phthalocyanine on the surface of a gold electrode based on electrostatic interaction and its application as an amperometric sensor of hydrazine. Thin Solid Films 288:291–295

    Article  CAS  Google Scholar 

  131. Geraldo DA, Togo CA, Limson J, Nyokong T (2008) Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim Acta 53:8051–8057

    Article  CAS  Google Scholar 

  132. Ardiles P, Trollund E, Isaacs M, Armijo F, Canales JC, Aguirre MJ (2001) Electrocataltyic oxidation of hydrazine at polymeric iron-tetraaminophthalocyanine modified electrodes. J Mol Catalysis A: Chem 165:169–175

    Article  CAS  Google Scholar 

  133. Mani V, Vilian ATE, Chen SM (2012) Graphene oxide dispersed carbon nanotube and iron phthalocyanine composite modified electrode for the electrocatalytic determination of hydrazine. Int J Electrochem Sci 7:12774–12785

    CAS  Google Scholar 

  134. George RC, Mugadza T, Khene S, Egharev O, Nyokong T (2011) Porphyrin nanorods modified glassy carbon electrode for the electrocatalysis of dioxygen, methanol and hydrazine. Electroanalysis 23:1699–1708

    Article  CAS  Google Scholar 

  135. Bravo P, Isaacs F, Ramirez G, Azocar I, Trollund E, Aguirre MJ (2007) A potentiometric hydrazine sensor: para-Ni-tetraaminophenylporphyrin/Co-cobaltite/SNO2: F modified electrode. J Coord Chem 60:2499–2507

    Article  CAS  Google Scholar 

  136. Pessoa CA, Gushikem Y, Nakagaki S (2002) Cobalt porphyrin immobilized on a niobium(V) oxide grafted—silica gel surface: study of the catalytic oxidation of hydrazine. Electroanalysis 14:1072–1076

    Article  CAS  Google Scholar 

  137. Guerra SV, Kubota LT, Xavier CR, Nakagaki S (1999) Experimental optimization of selective hydrazine detection in flow injection analysis using a carbon paste electrode modified with copper porphyrin occluded into zeolite cavity. Anal Sci 15:1231–1234

    Article  CAS  Google Scholar 

  138. Guerra SV, Xavier CR, Nakagaki S, Kubota LT (1998) Electrochemical behavior of copper porphyrin synthesized into zeolite cavity: a sensor for hydrazine. Electroanalysis 10:462–466

    Article  CAS  Google Scholar 

  139. Conceicão CDC, Faria RC, Fatibello-FilhoO Tanaka AA (2008) Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Anal Lett 41:1010–1021

    Article  CAS  Google Scholar 

  140. Ebadi M (2003) Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode. Can J Chem 81:161–168

    Article  CAS  Google Scholar 

  141. Perez EF, Neto GO Tanaka AA, Kubota LT (1998) Electrochemical sensor for hydrazine based on silica modified with nickel tetrasulfonated phthalocyanine. Electroanalysis 10:111–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio Santos Damos or Auro Atsushi Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Damos, F.S., de Cássia Silva Luz, R., Tanaka, A.A. (2016). Electroanalysis of Hydrazine and Related Compounds by Oxidation Promoted with MN4 Macrocyclics. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_5

Download citation

Publish with us

Policies and ethics