Skip to main content

Spectroelectrochemistry of Phthalocyanines

  • Chapter
  • First Online:

Abstract

Conventional electroanalytical methods: voltammetry, amperometry, and so on are excellent methods to determine concentrations, to drive thermodynamic parameters of a system (peak potential, free energy change, entropy, etc.), and to clarify redox reaction mechanisms. However, these techniques are not themselves enough to identify unknown intermediates and products formed during a redox reaction. A combinatory technique, spectroelectrochemistry (SEC) can solve this problem. Since SEC allows for a more complete analysis of electron transfer reactions and complex redox processes. Although SEC techniques have been well developed during the last few decades, their applications in different fields have recently become more widespread (Gale in Spectroelectrochemistry: theory and practice. Springer, New York, 1988 [1]). This chapter is meant to serve a guide where SEC can clarify the understanding of the redox reactions through identifications of the intermediates and products of various phthalocyanines. Phthalocyanines (Pcs) are one of the most prominent ligand types in coordination chemistry. They are used as dyes, photosensitizers, catalysts, sensors, and electrochromic materials, which are well generally related with their versatile redox properties and their outstanding roles in these areas are well documented (Sorokin in Chem Rev 113(10):8152–8191, 2013; Kobayashi and Konami in Phthalocyanines: properties and applications. VCH, New York, 1996; Milaeva et al. in the phthalocyanines, properties and applications. Wiley, New York, pp. 162–227, 1992 [2–4]). One of the most distinctive properties of Pcs is the rich redox behaviors, up to four reductions and two oxidation reactions. On the other hand many of the metal ions in the core of Pcs [in metallophthalocyanines (MPcs)] and some substituents can give extra redox reactions between the electron transfer reactions of Pc ring. A clear assignment of such redox reactions in MPcs is not easy to make with only voltammetric analyses. For a profound understanding of the electrochemical behaviors of MPcs, e.g., interaction of Pc ring and metal centers or axial, peripheral, and/or nonperipheral substituents, electrochemical and spectroscopic and of course SEC experiments are in general carried out (Ou et al. in Macroheterocycles 4(3):164–170, 2011; Alemdar et al. in Polyhedron 28(17):3788–3796, 2009; Sekota and Nyokong in Polyhedron 15(17):2901–2908, 1996; Arici et al. in Electrochim Acta 87:554–566, 2013; Burat et al. in Electroanal 24(2):338–348, 2012; Simicglavaski et al. in J Electrochem Soc 134(3):C130, 1987 [5–10]). This chapter will report on how SEC can contribute to the assignments of different classes of MPc complexes. Since there has been extensive investigation on the electrochemical properties of MPcs, this chapter focuses on the generalization of SEC responses of the similar types of the complexes. We classified MPcs as metal-free phthalocyanines (H2Pcs), metallophthalocyanines bearing redox inactive metal centers (MPcs-RIAM), metallophthalocyanines bearing redox active metal centers (MPcs-RAM), metallophthalocyanines carrying redox active substituents (MPcs-RAS), and sandwich metallophthalocyanines (MPc2s) due to the characteristic SEC response differences between these groups of complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gale RJ (1988) Spectroelectrochemistry: theory and practice. Springer, Berlin

    Google Scholar 

  2. Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113(10):8152–8191

    Google Scholar 

  3. Kobayashi N, Konami H (1996) In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, vol 4. VCH, New York

    Google Scholar 

  4. Milaeva ER, Speier G, Lever ABP (1992) The redox chemistry of metallophthalocyanines in solution. In: Leznoff CC, Lever ABP (eds) The Phthalocyanines, properties and applications. Wiley, New York, pp 162–227

    Google Scholar 

  5. Ou ZP, Zhan RQ, Tomachynski LA, Chernii VY, Kadish KM (2011) Electrochemistry and spectroelectrochemistry of zirconium(IV) and hafnium(IV) phthalocyanines with beta-diketone axial ligands in nonaqueous media. Macroheterocycles 4(3):164–170

    Google Scholar 

  6. Alemdar A, Ozkaya AR, Bulut M. Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron. 28(17):3788–3796

    Google Scholar 

  7. Sekota M, Nyokong T (1996) Cyclic voltammetry and spectroelectrochemistry of osmium phthalocyanines in aqueous and non-aqueous solvents. Polyhedron 15(17):2901–2908

    Google Scholar 

  8. Arici M, Arican D, Ugur AL, Erdogmus A, Koca A (2013) Electrochemical and spectroelectrochemical characterization of newly synthesized manganese, cobalt, iron and copper phthalocyanines. Electrochim Acta 87:554–566

    Google Scholar 

  9. Burat AK, Bayir ZA, Koca A (2012) Synthesis and electrochemical and in situ spectroelectrochemical characterization of chloroindium(III) and chloromanganese(III) phthalocyanines bearing 4-((4′-Trifluoromethyl)phenoxy)phenoxy substituents. Electroanal 24(2):338–348

    Google Scholar 

  10. Simicglavaski B, Zecevic S, Yeager E (1987) Spectroelectrochemical insitu studies of phthalocyanines. J Electrochem Soc 134(3):C130

    Google Scholar 

  11. Sakamoto K, Ohno E (1997) Synthesis and electron transfer property of phthalocyanine derivatives. Prog Org Coat 31(1):139–145

    Google Scholar 

  12. Jin Z, Nolan K, McArthur C, Lever A, Leznoff C (1994) Synthesis, electrochemical and spectroelectrochemical studies of metal-free 2, 9, 16, 23-tetraferrocenylphthalocyanine. J Organomet Chem 468(1):205–212

    Google Scholar 

  13. Koca A, Özkaya AR, Selçukoğlu M, Hamuryudan E (2007) Electrochemical and spectroelectrochemical characterization of the phthalocyanines with pentafluorobenzyloxy substituents. Electrochim Acta 52(7):2683–2690

    Google Scholar 

  14. Li R, Zhang X, Zhu P, Ng DK, Kobayashi N, Jiang J (2006) Electron-donating or-withdrawing nature of substituents revealed by the electrochemistry of metal-free phthalocyanines. Inorg Chem 45(5):2327–2334

    Google Scholar 

  15. Biyiklioglu Z, Cakir V, Demir F, Koca A. New electropolymerizable metal-free and metallophthalocyanines bearing {2-[3-(diethylamino)phenoxy]ethoxy} substituents. Synth Met 196:166–172

    Google Scholar 

  16. Nas A, Kantekin H, Koca A (2014) Novel 4-(2-(benzo[d]thiazol-2-yl)phenoxy) substituted phthalocyanine derivatives: Synthesis, electrochemical and in situ spectroelectrochemical characterization. J Organomet Chem 757:62–71

    Article  CAS  Google Scholar 

  17. Karaoglu HRP, Koca A, Kocak MB (2012) Synthesis, electrochemical and spectroelectrochemical characterization of novel soluble phthalocyanines bearing chloro and quaternizable bulky substituents on peripheral positions. Dyes Pigm 92(3):1005–1017

    Google Scholar 

  18. Özçelik Ş, Koca A, Gül A (2012) Synthesis and electrochemical investigation of phthalocyanines with dendritic bulky ethereal substituents. Polyhedron 42(1):227–235

    Google Scholar 

  19. Karaoğlu H, Koca A, Koçak MB (2012) Synthesis, electrochemical and spectroelectrochemical characterization of novel soluble phthalocyanines bearing chloro and quaternizable bulky substituents on peripheral positions. Dyes Pigm 92(3):1005–1017

    Google Scholar 

  20. Odabaş Z, Orman EB, Durmuş M, Dumludağ F, Özkaya AR, Bulut M (2012) Novel alpha-7-oxy-4-(4-methoxyphenyl)-8-methylcoumarin substituted metal-free, Co(II) and Zn(II) phthalocyanines: photochemistry, photophysics, conductance and electrochemistry. Dyes Pigm 95(3):540–552

    Google Scholar 

  21. Jin Z, Nolan K, Mcarthur CR, Lever ABP, Leznoff CC (1994) Synthesis, electrochemical and spectroelectrochemical studies of metal-free 2,9,16,23-tetraferrocenylphthalocyanine. J Organomet Chem 468(1–2):205–212

    Google Scholar 

  22. Leznoff CC, Lever ABP (1996) Phthalocyanines, properties and applications, 4 edn. Wiley-VCH, New York

    Google Scholar 

  23. L’Her M, Pondaven A (2003) Electrochemistry of phthalocyanines. In: The porphyrin handbook: phthalocyanines: spectroscopic and electrochemical characterization, vol 16, pp 117–170

    Google Scholar 

  24. Kadish K, Guilard R, Smith KM (2012) The porphyrin handbook: phthalocyanines: spectroscopic and electrochemical characterization. Academic Press, New York

    Google Scholar 

  25. Swarts JC, Langner EH, Krokeide-Hove N, Cook MJ (2001) Synthesis and electrochemical characterisation of some long chain 1, 4, 8, 11, 15, 18, 22, 25-octa-alkylated metal-free and zinc phthalocyanines possessing discotic liquid crystalline properties. J Mater Chem 11(2):434–343

    Google Scholar 

  26. Tse YH, Kobayashi N, Lever ABP (2001) Electrochemistry and spectroelectrochemistry of strongly electron-withdrawing metallated octanitrophthalocyanines. Collect Czech Chem C 66(2):338–354

    Google Scholar 

  27. Lever ABP, Tse YH, Manivannan V, Seymour P, Strelets VV, Persand LS (1996) Electrochemistry and spectroelectrochemistry of chloro(phthalocyaninato)rhodium(III) species in solution phase. Inorg Chem 35(3):725–734

    Google Scholar 

  28. Tse YH, Goel A, Hu MG, Lever ABP, Leznoff CC, Vanlier JE (1993) Electrochemistry and spectroelectrochemistry of substituted tetrabenzotriazaporphine. Can J Chem (Revue Canadienne De Chimie) 71(5):742–753

    Google Scholar 

  29. Koca A, Bayar S, Dincer HA, Gonca E (2009) Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines. Electrochim Acta 54(10):2684–2692

    Google Scholar 

  30. Kobayashi N, Ashida T, Osa T (1992) Synthesis, spectroscopy, electrochemistry, and spectroelectrochemistry of a zinc phthalocyanine with D2h symmetry. Chem Lett 1992(10):2031–2034

    Google Scholar 

  31. Obirai J, Nyokong T (2005) Synthesis, spectral and electrochemical characterization of mercaptopyrimidine-substituted cobalt, manganese and Zn (II) phthalocyanine complexes. Electrochim Acta 50(16):3296–3304

    Google Scholar 

  32. Giribabu L, Singh VK, Jella T, Soujanya Y, Amat A, De Angelis F, et al (2013) Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes Pigm 98(3):518–529

    Google Scholar 

  33. Özgül G, Taştemel A, Özkaya AR, Bulut M (2015) Synthesis, characterization and comparative electrochemistry of beta and alpha tetra-[4-oxy-3-methoxybenzoic acid]-substituted Zn(II), Co(II) and Cu(II) phthalocyanines. Polyhedron 85:181–189

    Google Scholar 

  34. Burat AK, Bayır ZA, Koca A(2012) Synthesis and electrochemical and in situ spectroelectrochemical characterization of chloroindium(III) and chloromanganese(III) phthalocyanines bearing 4-((4′-Trifluoromethyl) phenoxy) phenoxy Substituents. Electroanal 24(2):338–348

    Google Scholar 

  35. Ou Z, Shen J, Kadish KM (2006) Electrochemistry of aluminum phthalocyanine: solvent and anion effects on UV-visible spectra and reduction mechanisms. Inorg Chem 45(23):9569–9579

    Google Scholar 

  36. Günsel A, Bilgiçli AT, Kandaz M, Orman EB, Özkaya AR (2014) Ag(I) and Pd(II) sensing, H-or J-aggregation and redox properties of metal-free, manganase (III) and gallium (III) phthalocyanines. Dyes Pigm 102:169–179

    Google Scholar 

  37. Sevim AM, Yenilmez HY, Aydemir M, Koca A, Bayir ZA (2014) Synthesis, electrochemical and spectroelectrochemical properties of novel phthalocyanine complexes of manganese, titanium and indium. Electrochim Acta 137:602–615

    Google Scholar 

  38. Griveau S, Albin V, Pauporté T, Zagal JH, Bedioui F (2002) Comparative study of electropolymerized cobalt porphyrin and phthalocyanine based films for the electrochemical activation of thiols. J Mater Chem 12(2):225–232

    Google Scholar 

  39. Nevin W, Liu W, Melnik M, Lever A (1986) Spectro-electrochemistry of cobalt and iron tetrasulphonated phthalocyanines. J Electroanal Chem Interfacial Electrochem 213(2):217–234

    Google Scholar 

  40. Obirai J, Rodrigues NP, Bedioui F, Nyokong T (2003) Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes. J Porphyrins Phthalocyanines 7(07):508–520

    Google Scholar 

  41. Alemdar A, Özkaya AR, Bulut M (2009) Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron 28(17):3788–3796

    Google Scholar 

  42. Kobayashi N, Lam H, Nevin WA, Janda P, Leznoff CC, Lever A (1990) Electrochemistry and spectroelectrochemistry of 1, 8-naphthalene-and 1, 8-anthracene-linked cofacial binuclear metallophthalocyanines. New mixed-valence metallophthalocyanines. Inorg Chem 29(18):3415–3425

    Google Scholar 

  43. Kobayashi N, Nakajima Si, Ogata H, Fukuda T (2004) Synthesis, Spectroscopy, and Electrochemistry of Tetra-tert-butylated tetraazaporphyrins, phthalocyanines, naphthalocyanines, and anthracocyanines, together with molecular orbital calculations. Chem Eur J 10(24):6294–6312

    Google Scholar 

  44. Nombona N, Nyokong T (2009) The synthesis, cyclic voltammetry and spectroelectrochemical studies of Co(II) phthalocyanines tetra-substituted at the alpha and beta positions with phenylthio groups. Dyes Pigm 80(1):130–135

    Google Scholar 

  45. Kilicaslan MB, Kantekin H, Koca A (2014) Synthesis, electrochemical, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of new phthalocyanines containing macrocyclic moieties. Dyes Pigm 103:95–105

    Article  CAS  Google Scholar 

  46. Cakir V, Kantekin H, Biyiklioglu Z, Koca A (2014) Synthesis, electrochemistry, spectroelectrochemistry and electropolymerization of metal-free and metallophthalocyanines. Polyhedron 81:525–533

    Article  CAS  Google Scholar 

  47. Arican D, Arici M, Ugur AL, Erdogmus A, Koca A (2013) Effects of peripheral and nonperipheral substitution to the spectroscopic, electrochemical and spectroelectrochemical properties of metallophthalocyanines. Electrochim Acta 106:541–555

    Google Scholar 

  48. Ozcesmeci I, Koca A, Gul A (2011) Synthesis and electrochemical and in situ spectroelectrochemical characterization of manganese, vanadyl, and cobalt phthalocyanines with 2-naphthoxy substituents. Electrochim Acta 56(14):5102–5114

    Google Scholar 

  49. Karaoglan GK, Gumrukcu G, Koca A, Gul A (2011) The synthesis, characterization, electrochemical and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyanine with extended conjugation. Dyes Pigm 88(3):247–256

    Google Scholar 

  50. Nevin WA, Hempstead MR, Liu W, Leznoff CC, Lever A (1987) Electrochemistry and spectroelectrochemistry of mononuclear and binuclear cobalt phthalocyanines. Inorg Chem 26(4):570–577

    Google Scholar 

  51. Ozcelik S, Koca A, Gul A (2012) Synthesis and electrochemical investigation of phthalocyanines with dendritic bulky ethereal substituents. Polyhedron 42(1):227–235

    Article  CAS  Google Scholar 

  52. Koca A (2011) Electrochemical and in situ spectroelectrochemical monitoring of the interaction between cobaltphthalocyanines and molecular oxygen in aprotic media. J Electroanal Chem 655(2):128–139

    Google Scholar 

  53. Dolotova O, Konarev A, Volkov K, Negrimovsky V, Kaliya OL (2012) Coordination and electrochemistry of new substituted manganese phthalocyanines. J Porphyrins Phthalocyanines 16(7–8):946–957

    Google Scholar 

  54. Sezer B, Sener MK, Koca A, Erdogmus A, Avciata U (2010) Synthesis, electrochemistry, spectroelectrochemistry and electrocolorimetry of phthalocyanine-anthraquinone hybrids. Synth Met 160(19–20):2155–2166

    Google Scholar 

  55. Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51(13):2669–2677

    Google Scholar 

  56. Liu Y, Lin XQ (1999) Electrochemistry and spectroelectrochemistry study of manganese phthalocyanine in nonaqueous media. Chin J Anal Chem 27(9):1026–1028

    Google Scholar 

  57. Blakemore JD, Hull JF, Crabtree RH, Brudvig GW (2012) Aqueous speciation and electrochemical properties of a water-soluble manganese phthalocyanine complex. Dalton T 41(25):7681–7688

    Google Scholar 

  58. Quinton D, Antunes E, Griveau S, Nyokong T, Bedioui F (2011) Cyclic voltammetry and spectroelectrochemistry of a novel manganese phthalocyanine substituted with hexynyl groups. Inorg Chem Commun 14(1):330–332

    Google Scholar 

  59. Mashazi P, Antunes E, Nyokong T (2010) Probing electrochemical and electrocatalytic properties of cobalt(II) and manganese(III) octakis(hexylthio) phthalocyanine as self-assembled monolayers. J Porphyrins Phthalocyanines 14(11):932–947

    Google Scholar 

  60. Akinbulu IA, Nyokong T (2010) The effects of point of substitution on the electrochemical behavior of new manganese phthalocyanines, tetra-substituted with diethylaminoethanethiol. Inorg Chim Acta 363(13):3229–3237

    Google Scholar 

  61. Mbambisa G, Tau P, Antunes E, Nyokong T (2007) Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups. Polyhedron 26(18):5355–5364

    Google Scholar 

  62. Leznoff CC, Black LS, Hiebert A, Causey PW, Christendat D, Lever ABP (2006) Red manganese phthalocyanines from highly hindered hexadecaalkoxyphthalocyanines. Inorg Chim Acta 359(9):2690–2699

    Google Scholar 

  63. Altun S, Odabaş Z, Altındal A, Özkaya AR () Coumarin-substituted manganese phthalocyanines: synthesis, characterization, photovoltaic behaviour, spectral and electrochemical properties. Dalton T 43(21):7987–7997

    Google Scholar 

  64. Kandaz M, Koca A (2009) Synthesis, in situ spectroelectrochemical, in situ electrocolorimetric and electrocatalytic investigation of brown-manganese phthalocyanines. Polyhedron 28(14):2933–2942

    Article  CAS  Google Scholar 

  65. Shao JG, Richards K, Rawlins D, Han BC, Hansen CA (2013) Synthesis, electrochemistry, spectroelectrochemistry and catalytic properties in DDT reductive dechlorinationin of iron(II) phthalocyanine, 2,3- and 3,4-tetrapyridinoporphyrazine complexes. J Porphyrins Phthalocyanines 17(4):317–330

    Google Scholar 

  66. Tasso TT, Furuyama T, Kobayashi N (2013) Absorption and electrochemical properties of cobalt and iron phthalocyanines and their quaternized derivatives: aggregation equilibrium and oxygen reduction electrocatalysis. Inorg Chem 52(16):9206–9215

    Google Scholar 

  67. Arıcı M, Arıcan D, Uğur AL, Erdoğmuş A, Koca A (2013) Electrochemical and spectroelectrochemical characterization of newly synthesized manganese, cobalt, iron and copper phthalocyanines. Electrochim Acta 87:554–566

    Google Scholar 

  68. Agboola B, Ozoemena KI, Nyokong T (2006) Synthesis and electrochemical characterisation of benzylmercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochim Acta 51(21):4379–4387

    Google Scholar 

  69. Matemadombo F, Maree MD, Ozoemena KI, Westbroek P, Nyokong T (2005) Synthesis, electrochemical and spectroelectrochemical studies of octaphenylthio-substituted phthalocyanines. J Porphyrins Phthalocyanines 9(7):484–490

    Google Scholar 

  70. Obirai J, Rodrigues NP, Bedioui F, Nyokong T (2003) Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes. J Porphyrins Phthalocyanines 7(7):508–520

    Google Scholar 

  71. Adebayo AI, Nyokong T (2009) Synthesis, spectroscopic and electrochemical properties of manganese, nickel and iron octakis-(2-diethylaminoethanethiol)-phthalocyanine. Polyhedron 28(14):2831–2838

    Google Scholar 

  72. Tau P, Nyokong T (2006) Synthesis and electrochemical characterisation of α- and β-tetra-substituted oxo(phthalocyaninato) titanium(IV) complexes. Polyhedron 25(8):1802–1810

    Google Scholar 

  73. Hodge JA, Hill MG, Gray HB (1995) Electrochemistry of nonplanar zinc (II) tetrakis (pentafluorophenyl) porphyrins. Inorg Chem 34(4):809–812

    Google Scholar 

  74. Demir F, Erdogmus A, Koca A (2013) Oxygen reduction reaction catalyzed with titanyl phthalocyanines in nonaqueous and aqueous media. Phys Chem Chem Phys 15(38):15926–15934

    Google Scholar 

  75. Demir F, Erdogmus A, Koca A (2013) Titanyl phthalocyanines: electrochemical and spectroelectrochemical characterizations and electrochemical metal ion sensor applications of Langmuir films. J Electroanal Chem 703:117–125

    Google Scholar 

  76. Jiang JZ, Bao M, Rintoul L, Arnold DP (2006) Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Coord Chem Rev 250(3–4):424–448

    Google Scholar 

  77. Milaeva ER, Speir G, Lever ABP (1992) The redox chemistry of metallophthalocyanines in solution. In: Leznoff CC, Lever ABP (eds) The phthalocyanines, properties and applications. Wiley, New York, pp 162–227

    Google Scholar 

  78. Wang K, Qi DD, Wang HL, Cao W, Li WJ, Liu T et al (2013) Binuclear phthalocyanine-based sandwich-type rare Earth complexes: unprecedented two π-bridged biradical-metal integrated SMMs. Chem Eur J 19(34):11162–11166

    Google Scholar 

  79. Gurek AG, Basova T, Luneau D, Lebrun C, Kol’tsov E, Hassan AK et al (2006) Synthesis, structure, and spectroscopic and magnetic properties of mesomorphic octakis(hexylthio)-substituted phthalocyanine rare-earth metal sandwich complexes. Inorg Chem 45(4):1667–1676

    Google Scholar 

  80. Martynov AG, Gorbunova YG, Khrapova IV, Sakharov SG, Tsivadze AY (2002) Synthesis and spectroscopic study of sandwich double-decker lanthanum complexes with tetra-15-crown-5-phthalocyanine. Russ J Inorg Chem 47(10):1479–1485

    Google Scholar 

  81. Pushkarev VE, Tolbin AY, Zhurkin FE, Borisova NE, Trashin SA, Tomilova LG et al (2012) Sandwich double-decker lanthanide(III) “Intracavity” Complexes based on clamshell-type phthalocyanine ligands: synthesis, spectral, electrochemical, and spectroelectrochemical investigations. Chem Eur J 18(29):9046–9055

    Google Scholar 

  82. Takahashi K, Tomita Y, Hada Y, Tsubota K, Handa M, Kasuga K et al (1992) Preparation and electrochemical properties of the green ytterbium(III) and lutetium(III) sandwich complexes of octabutoxy-substituted phthalocyanine. Chem Lett 1992(5):759–762

    Google Scholar 

  83. Gorishnyi MP, Koval’chuk OV, Koval’chuk TN, Verbitsky AB, Vovk VE (2011) Electrical properties of phthalocyanine-based sandwich cells with embedded ultrathin metallic layer. Mol Cryst Liq Cryst 535:49–56

    Article  CAS  Google Scholar 

  84. Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77(1):117–133

    Google Scholar 

  85. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27(1):2–18

    Article  CAS  Google Scholar 

  86. Rowley NM, Mortimer RJ (2002) New electrochromic materials. Sci Prog 85(3):243–262

    Google Scholar 

  87. Jiang J, Bian Y, Furuya F, Liu W, Choi M, Kobayashi N et al (2001) Synthesis, structure, spectroscopic properties, and electrochemistry of rare Earth sandwich compounds with mixed 2, 3-naphthalocyaninato and octaethylporphyrinato ligands. Chem Eur J 7(23):5059–5069

    Google Scholar 

  88. Zhu PH, Lu FL, Pan N, Arnold DP, Zhang SY, Jiang JZ (2004) Comparative electrochemical study of unsubstituted and substituted bis(phthalocyaninato) rare earth(III) complexes. Eur J Inorg Chem 2004(3):510–517

    Google Scholar 

  89. Pushkarev VE, Tolbin AY, Borisova NE, Trashin SA, Tomilova LG (2010) A3B-type phthalocyanine-based homoleptic lanthanide (III) double-decker π-radical complexes bearing functional hydroxy groups: synthetic approach, spectral properties and electrochemical study. Eur J Inorg Chem 2010(33):5254–5262

    Google Scholar 

  90. Orman EB, Koca A, Ozkaya AR, Gurol I, Durmus M, Ahsen V (2014) Electrochemical, spectroelectrochemical, and electrochromic properties of lanthanide bis-phthalocyanines. J Electrochem Soc 161(6):H422–H929

    Google Scholar 

  91. Kobayashi N, Lam H, Nevin WA, Janda P, Leznoff CC, Koyama T et al (1994) Synthesis, spectroscopy, electrochemistry, spectroelectrochemistry, langmuir-blodgett-film formation, and molecular-orbital calculations of planar binuclear phthalocyanines. J Am Chem Soc 116(3):879–890

    Google Scholar 

  92. Arici M, Bozoglu C, Erdogmus A, Ugur AL, Koca A. Electrochemical and spectroelectrochemical properties of novel lutetium(III) mono- and bis-phthalocyanines. Electrochim Acta 113:668–678

    Google Scholar 

  93. Odabas Z, Koc I, Altindal A, Ozkaya AR, Salih B, Bekaroglu O (2010) Synthesis and electrochemical, in situ spectroelectrochemical, electrical and gas sensing properties of ball-type homo- and hetero-dinuclear phthalocyanines with four 1a,8b-dihydronaphtho b naphthofuro 3,2-d furan-7,10-diyl bridges. Synthetic Met 160(9–10):967–977

    Article  CAS  Google Scholar 

  94. Koca A, Ceyhan T, Erbil MK, Ozkaya AR, Bekaroglu O (2007) Electrochemistry and spectroelectrochemistry of tert-butylcalix 4 arene bridged bis double-decker lutetium(111) phthalocyanine, Lu2Pc4 and dimeric lutetium(III) phthalocyanine, Lu2Pc2(OAc)(2). Chem Phys 340(1–3):283–292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atıf Koca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koca, A. (2016). Spectroelectrochemistry of Phthalocyanines. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_4

Download citation

Publish with us

Policies and ethics