Skip to main content

Electrochemically Activated Catalytic Pathways of Human Metabolic Cytochrome P450s in Ultrathin Films

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes
  • 1047 Accesses

Abstract

Electrochemical understanding of metalloenzyme biocatalysts can guide in the development of green bioreactors for stereoselective syntheses and tailoring of efficient bio-inspired catalysts for large-scale applications. In addition, if the enzymes themselves can be stabilized into viable catalytic materials such as films or nanoparticles, valuable and unique stereo- and regiospecific reactions can be catalyzed in simple aqueous medium. In particular, biological electrocatalysis is an emerging area that is expected to play a significant role in fine chemical and drug synthesis, niche electronic devices, sustainable energy, and biomedical fields. Our research has specifically been inspired by the broad stereoselective biocatalytic properties of human cytochrome P450 (cyt P450) enzymes. Cyt P450s are a large family of heme iron monooxygenases with high expression in liver and other human organs that serve as the major oxidative catalysts in human metabolism. Electrochemical bioreactors featuring cyt P450s have the potential to complement and accelerate drug development processes by facilitating candidate identification and toxicity evaluation of metabolites. Challenging aspects associated with electrochemical studies of cyt P450s in thin films include enzyme stability, electronic connectivity between cyt P450-heme cofactor and electrodes, density of immobilized electrocatalytically active enzyme molecules, and bioactive cyt P450 conformations in films on electrodes. To achieve these features, various electrode surface environments have been explored. We designed ultrathin bioactive films of cyt P450 enzymes with polyions or insoluble surfactants that demonstrated the first direct electron transfer and biocatalytic applications of this class of enzymes on electrodes. Subsequently, we constructed films of genetically engineered microsomes, rat and human liver microsomes, and cyt P450s assembled with microsomal cyt P450 reductase (CPR) that enabled a bioelectrocatalytic pathway that closely mimicked the in vivo cyt P450 biocatalytic mechanism. These systems allowed us to develop a clearer understanding of cyt P450 electron transfer and enabled uses in microfluidic toxicity screening arrays. In this review, we provide an overview of different catalytic pathways that are accessed and driven electrochemically using pure human cyt P450 enzymes and those present in membrane-bound forms along with CPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortiz de Montellano PR, De Voss JJ (2005) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 183–245

    Google Scholar 

  2. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a Pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208

    Article  CAS  Google Scholar 

  3. Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  CAS  Google Scholar 

  4. Schenkman JB, Greim H (eds) (1993) Cytochrome P450, Springer, Berlin

    Google Scholar 

  5. Jung C (2011) The mystery of cytochrome P450 compound I: a mini-review dedicated to Klaus Ruckpaul. Biochim Biophys Acta 1814:46–57

    Article  CAS  Google Scholar 

  6. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.

    Google Scholar 

  7. Williams PA, Cosme J, Vinković DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686

    Google Scholar 

  8. Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355

    Article  CAS  Google Scholar 

  9. Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P-450 2E1. J Biol Chem 283:33698–33707

    Article  CAS  Google Scholar 

  10. Rhieu SY, Ludwig DR, Siu VS, Palmore GTR (2009) Direct electrochemistry of cytochrome P450 27B1 in surfactant films. Electrochem Commun 11:1857–1860

    Article  CAS  Google Scholar 

  11. Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) Cytochrome P450 compound I. J Am Chem Soc 128:4580–4581

    Article  CAS  Google Scholar 

  12. Nordblom GD, White RE, Coon MJ (1976) Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch Biochem Biophys 175:524–533

    Article  CAS  Google Scholar 

  13. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937

    Article  CAS  Google Scholar 

  14. Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  Google Scholar 

  15. Armstrong FA (1997) In: Lenz G, Milazzo G (eds) Bioelectrochemistry of biomacromolecules. Birkhauser Verlag, Basel, pp 205–255

    Google Scholar 

  16. Rusling JF, Zhang Z (2002) In: Chambers JQ, Brajter-Toth A (eds) Electroanalytical methods for biological materials. Marcel Dekker, New York, pp 195–231

    Google Scholar 

  17. Rusling JF, Zhang Z (2001) In: Nalwa RW (ed) Handbook of surfaces and interfaces of materials: biomolecules, biointerfaces, and applications, vol 5. Academic Press, Cambridge, pp 33–71

    Google Scholar 

  18. Bowden EF, Hawkridge FM, Blount HN (1985) In: Srinivasan S, Chizmadzhev YA, Bockris JO’M, Conway BE, Yeager E (eds) Comprehensive treatise of electrochemistry, vol 10. Plenum, New York, pp 297–346

    Google Scholar 

  19. Armstrong FA (1990) In: Bioinorganic chemistry: structure and bonding. Springer, Berlin, pp 137–221

    Google Scholar 

  20. Yeh P, Kuwana T (1997) Reversible electrode reaction of cytochrome c. Chem Lett 6:1145–1148

    Google Scholar 

  21. Eddowes MJ, Hill HAO (1977) Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc Chem Commun 21:771–772

    Google Scholar 

  22. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  23. Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Nat Acad Sci USA 92:7705–7709

    Google Scholar 

  24. Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–50

    Google Scholar 

  25. Vilker VL, Kahn F, Shen D, Baizer MM, Nobe K (1988) In: Dryhurst G, Niki K (ed) Redox chemistry and interfacial behavior of biological molecules. Plenum, New York, pp 105–112

    Google Scholar 

  26. Udit AK, Arnold FH, Gray HB (2004) J Inorg Biochem 98:1547–1550

    Article  CAS  Google Scholar 

  27. Zilly FE, Taglieber A, Schulz F, Hollmann F, Reetz MT (2009) Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem Commun 46:7152–7154

    Google Scholar 

  28. Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of cytochrome P450cam. Chem Commun 18:2189–2190

    Google Scholar 

  29. Rusling JF, Zhang Z (2003) In: Rusling JF (ed) Biomolecular films, Marcel Dekker, New York, pp 1–64

    Google Scholar 

  30. Rusling JF, Wang B, Yun SE (2008) In Bartlett PN (ed) Bioelectrochemistry, John Wiley, New York, pp 39–86

    Google Scholar 

  31. Yang M, Kabulski JL, Wollenberg L, Chen X, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metab Dispos 37:892–899

    Google Scholar 

  32. Todorovic S, Jung C, Hildebrandt P, Murgida DH (2006) Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization. J Biol Inorg Chem 11:119–127

    Google Scholar 

  33. Ferrero VEV, Andolfi L, Nardo GD, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G (2008) Protein and electrode engineering for the covalent immobilization of P450 bmp on gold. Anal Chem 80:8438–8446

    Article  CAS  Google Scholar 

  34. Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126:5040–5041

    Article  CAS  Google Scholar 

  35. Tanvir S, Pantigny J, Boulnois P, Pulvin S (2009) Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications. J Membr Sci 329:85–90

    Article  CAS  Google Scholar 

  36. Zhang Z, Nassar A-EF, Lu Z, Schenkman JB, Rusling JF (1997) Direct electron injection from electrodes to cytochrome P450 cam in biomembrane-like films. J Chem Soc Faraday Trans 93:1769–1774

    Article  CAS  Google Scholar 

  37. Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450 cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120:4073–4080

    Article  CAS  Google Scholar 

  38. Zu X, Lu Z, Zhang Z, Schenkman JB, Rusling JF (1999) Electroenzyme-catalyzed oxidation of styrene and cis-β-methylstyrene using thin films of cytochrome P450 cam and myoglobin. Langmuir 15:7372–7377

    Google Scholar 

  39. Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450 cam and myoglobin. Chem Bio Chem 4:82–89

    Google Scholar 

  40. Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys Chem 104:291–296

    Google Scholar 

  41. Krishnan S, Schenkman JB, Rusling JF (2011) Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 115:8371–8380

    Article  CAS  Google Scholar 

  42. Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors-a review. Biosens Bioelec 20:2408–2423

    Article  CAS  Google Scholar 

  43. Krishnan S, Rusling JF (2013) Thin iron heme enzyme films on electrodes and nanoparticles for biocatalysis. In: S. Suib (ed) New and future developments in catalysis. Elsevier Publishers, Amsterdam, p. 125

    Google Scholar 

  44. Fleming BD, Johnson DL, Bond AM, Martin LL (2006) Recent progress in cytochrome P450 enzyme electrochemistry. Expert Opin Drug Metab Toxicol 2:581–589

    Article  CAS  Google Scholar 

  45. Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelec 39:1–13

    Article  CAS  Google Scholar 

  46. Dodhia VR, Gilardi G (2009) In: Davis J (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. RSC publications, London, pp 153–189

    Google Scholar 

  47. Krishnan S, Abeykoon A, Schenkman JB, Rusling JF (2009) Control of electrochemical and ferryloxy formation kinetics of cyt P450s in polyion films by heme iron spin state and secondary structure. J Am Chem Soc 131:16215–16224

    Article  CAS  Google Scholar 

  48. Bard A, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New Jersey

    Google Scholar 

  49. Heering HA, Hirst J, Armstrong FA (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J Phys Chem B 102:6889–6902

    Article  CAS  Google Scholar 

  50. Guto PM, Rusling JF (2005) Enzyme-like kinetics of ferryloxy myoglobin formation in films on electrodes in microemulsions. J Phys Chem B 109:24457–24464

    Article  CAS  Google Scholar 

  51. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239:2379–2385

    CAS  Google Scholar 

  52. Sandhu P, Guo Z, Baba T, Martin MV, Tukey RH, Guengerich FP (1994) Expression of modified human cytochrome P450 1A2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys 309:168–177

    Article  CAS  Google Scholar 

  53. Sligar SG, Gunsalus IC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci USA 73:1078–1082

    Article  CAS  Google Scholar 

  54. Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 129:13778–13779

    Google Scholar 

  55. Sligar SG (1976) Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry 15:5399–5406

    Google Scholar 

  56. Johnson DL, Conley AJ, Martin LL (2006) Direct electrochemistry of human, bovine and porcine cytochrome P450c17. J Mol Endocrinol 36:349–359

    Article  CAS  Google Scholar 

  57. Iwuoha EI, Kane S, Ania CO, Smyth MR, Ortiz de Montellano PR, Fuhr U (2000) Reactivities of organic phase biosensors 3: electrochemical study of cytochrome P450 cam immobilised in a methyltriethoxysilane sol-gel. Electroanalysis 12:980–986

    Article  CAS  Google Scholar 

  58. Lei C, Wollenberger U, Jung C, Scheller FW (2000) Clay-bridged electron transfer between cytochrome P450 cam and electrode. Biochem Biophys Res Commun 268:740–744

    Article  CAS  Google Scholar 

  59. Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826

    Article  CAS  Google Scholar 

  60. Feng D, Schultz FA (1988) Relationship between structural change and heterogeneous electron-transfer rate constant in iron-tetraphenylporphyrin complexes. Inorg Chem 27:2144–2149

    Article  CAS  Google Scholar 

  61. Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed 42:3299–3301

    Article  CAS  Google Scholar 

  62. Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 94:13554–13558

    Article  CAS  Google Scholar 

  63. Paternolli C, Antonini M, Ghisellini P, Nicolini C (2004) Recombinant cytochrome p450 immobilization for biosensor applications. Langmuir 20:11706–11712

    Article  CAS  Google Scholar 

  64. Liu S, Peng L, Yang X, Wu Y, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 375:209–216

    Article  CAS  Google Scholar 

  65. Dai C, Ding Y, Li M, Fei J (2012) Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black. Microchim Acta 176:397–404

    Article  CAS  Google Scholar 

  66. Sun P, Wu Y (2013) An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sens Actuators B 178:113–118

    Article  CAS  Google Scholar 

  67. Wasalathanthri DP, Li D, Song D, Zheng Z, Choudhary D, Jansson I, Lu X, Schenkman JB, Rusling JF (2015) Elucidating organ-specific metabolic toxicity chemistry from Electrochemiluminescent Enzyme/DNA arrays and bioreactor BeadLC-MS/MS. Chem Sci 6:2457–2468

    Google Scholar 

  68. Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman JB, Rusling JF (2007) Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from Benzo[a]pyrene Metabolites. Anal Chem 79:1897–1906

    Google Scholar 

  69. Krishnan S, Hvastkovs EG, Bajrami B, Choudhary D, Schenkman JB, Rusling JF (2008) Synergistic metabolic toxicity screening using Microsome/DNA Electrochemiluminescent arrays and nanoreactors. Anal Chem 80:5279–5285

    Google Scholar 

  70. Wasalathanthri DP, Malla S, Bist I, Tang CK, Faria RC, Rusling JF (2013) High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence. Lab Chip 13:4554–4562

    Google Scholar 

  71. Krishnan S, Wasalathanthri D, Zhao L, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. J Am Chem Soc 133:1459–1465

    Article  CAS  Google Scholar 

  72. Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun 10:1744–1747

    Article  CAS  Google Scholar 

  73. Walgama C, Nerimetla R, Materer NF, Schildkraut D, Elman JF, Krishnan S (2015) A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition assays. Anal Chem 87:4712–4718

    Article  CAS  Google Scholar 

  74. Sultana N, Schenkman JB, Rusling JF (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases. J Am Chem Soc 127:13460–13461

    Article  CAS  Google Scholar 

  75. Mie Y, Suzuki M, Komatsu Y (2009) Electrochemically driven drug metabolism by membranes containing human cytochrome P450. J Am Chem Soc 131:6646–6647

    Article  CAS  Google Scholar 

  76. Bajrami B, Krishnan S, Rusling JF (2008) Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS. Drug Metab Lett 2:158–162

    Article  CAS  Google Scholar 

  77. Rudakov YO, Shumyantseva VV, Bulko TV, Suprun EV, Kuznetsova GP, Samenkova NF, Archakov AI (2008) Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4. J Inorg Biochem 102:2020–2025

    Article  CAS  Google Scholar 

  78. Chatterjee S, Sengupta K, Samanta S, Kumar Das P, Dey A (2013) Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance raman and dynamic electrochemistry investigations. Inorg Chem 52:9897–9907

    Google Scholar 

  79. Wong A, de Vasconcelos Lanza MR, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. J Electroanal Chem 690:83–88

    Google Scholar 

  80. da Silva DC, De Freitas-Silva G, do Nascimento E, Rebouças JS, Barbeira PJS, Dai de Carvalho MEM, Idemori YM (2008) Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of β-bromination. J Inorg Biochem 102:1932–1941

    Google Scholar 

Download references

Acknowledgments

The authors thank colleagues named in joint publications who collaborated on research in this area, and without whom progress would not have been possible. JFR thanks the National Institute of Environmental Health Sciences (NIEHS), NIH, USA, Grant No. ES03154 for financial support. SK is grateful for financial support by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Number R15DK103386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadagopan Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krishnan, S., Rusling, J.F. (2016). Electrochemically Activated Catalytic Pathways of Human Metabolic Cytochrome P450s in Ultrathin Films. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_2

Download citation

Publish with us

Policies and ethics