Skip to main content

Electrosynthesis of Oligo- and Polyporphyrins Based on Oxidative Coupling of Macrocycles

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

This chapter is devoted to oligo- and polyporphyrin systems obtained from reactions directly involving macrocycles, especially from their oxidized states. Indeed, it is possible to oxidize porphyrin macrocycles, leading successively to π-radical cations and then dications, these species being very reactive. Oxidized porphyrins can either react with nucleophilic groups or couple each other to give oligomers or polymers of porphyrins. This reactivity offers a novel electrochemical pathway to synthesize supramolecular assemblies containing porphyrin macrocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ojadi E, Selzer R, Linschitz H (1985) Properties of porphyrin dimers, formed by pairing cationic and anionic porphyrins. J Am Chem Soc 107:7783–7784

    Article  CAS  Google Scholar 

  2. van Willigen H, Das U, Ojadi E, Linschitz H (1985) Triplet ESR study of dimerization of cationic and anionic water-soluble porphyrins. J Am Chem Soc 107:7784–7785

    Article  Google Scholar 

  3. Hofstra U, Koehorst RBM, Schaafsma TJ (1986) Excited-state properties of water-soluble porphyrin dimers. Chem Phys Lett 130:555–559

    Article  CAS  Google Scholar 

  4. Endisch C, Fuhrhop J-H, Buschmann J, Luger P, Siggel U (1986) β-tetraethyl-β’-tetrapyridin-4-yl porphyrins, their N-methylated tetracations, and heterodimers with ms-tetraphenylsulfonato porphyrins. J Am Chem Soc 118:6671–6680

    Article  Google Scholar 

  5. Ruhlmann L, Nakamura A, Vos JG, Fuhrhop J-H (1998) Manganese porphyrin heterodimers and -trimers in aqueous solution. Inorg Chem 37:6052–6059

    Article  CAS  Google Scholar 

  6. Fudickar W, Zimmermann J, Ruhlmann L, Schneider J, Röder B, Siggel U, Fuhrhop J-H (1999) Fluorescence quenching and size selective heterodimerization of a porphyrin adsorbed to gold and embedded in rigid membrane gaps. J Am Chem Soc 121:9539–9545

    Article  CAS  Google Scholar 

  7. Ruhlmann L, Zimmermann J, Fudickar W, Siggel U, Fuhrhop J-H (2001) Heterodimers and -trimers of meso-tetra-(isophtalicacid)-porphyrin octaanions with meso- and β-tetramethylpyridinium-porphyrin tetracations and their manganese complexes in water. Electrochemistry, spectroelectrochemistry and fluorescence quenching. J Electroanal Chem 503:1–14

    Article  CAS  Google Scholar 

  8. Olaya AJ, Schaming D, Brevet P-F, Nagatani H, Zimmermann T, Vanicek J, Xu H-J, Gros CP, Barbe J-M, Girault HH (2012) Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction. J Am Chem Soc 134:498–506

    Article  CAS  Google Scholar 

  9. Franco R, Jacobsen JL, Wang H, Wang Z, Istvan K, Schore NE, Song Y, Medforth CJ, Shelnutt JA (2010) Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy. Phys Chem Chem Phys 12:4072–4077

    Article  CAS  Google Scholar 

  10. Martin KE, Wang Z, Busani T, Gracia RM, Chen Z, Jiang Y, Song Y, Jacobsen JL, Vu TT, Schore NE, Swartzentruber BS, Medforth CJ, Shelnutt JA (2010) Donor-acceptor biomorphs from the ionic self-assembly of porphyrins. J Am Chem Soc 132:8194–8201

    Article  CAS  Google Scholar 

  11. Tian Y, Martin KE, Shelnutt JY-T, Evans L, Busani T, Miller JE, Medforth CJ, Shelnutt JA (2011) Morphological families of self-assembled porphyrin structures and theur photosensitization of hydrogen generation. Chem Commun 47:6069–6071

    Article  CAS  Google Scholar 

  12. Medforth CJ, Wang Z, Martin KE, Song Y, Jacobsen JL, Shelnutt JA (2009) Self-assembled porphyrin nanostructures. Chem Commun. 47:7261–7277

    Google Scholar 

  13. Collman JP, McDevitt JT, Leidner CR, Yee GT, Torrance JB, Little WA (1987) Synthetic, electrochemical, optical, and conductivity studies of coordination polymers of iron, ruthenium, and osmium octaethylporphyrin. J Am Chem Soc 109:4606–4614

    Article  CAS  Google Scholar 

  14. Marvaud V, Launay J-P (1993) Control of intramolecular electron transfer by protonation: oligomers of ruthenium porphyrins bridged by 4,4’-azopyridine. Inorg Chem 32:1376–1382

    Article  CAS  Google Scholar 

  15. Wojaczynski J, Latos-Grazynski L (2000) Poly- and oligometalloporphyrins associated through coordination. Coord Chem Rev 204:113–171

    Article  CAS  Google Scholar 

  16. Punidha S, Ravikanth M (2004) Synthesis of mono meso-pyridyl 21,23-dithiaporphyrins and unsymmetrical non-covalent porphyrin dimers. Tetrahedron 60:8437–8444

    Article  CAS  Google Scholar 

  17. Ogawa K, Kobuke Y (2006) Construction and photophysical properties of self-assembled linear porphyrin arrays. J Photochem Photobiol C: Photochem 7:1–16

    Article  CAS  Google Scholar 

  18. Maeda C, Shinokubo H, Osuka A (2009) meso, meso’-bis(5-azaindol-2-yl)-appended meso-meso-linked Zn(II) diporphyrin: a discrete fluorescent assembly. Org Lett 11:5322–5325

    Article  CAS  Google Scholar 

  19. Maeda C, Kamada T, Aratani N, Sasamori T, Tokitoh N, Osuka A (2009) Selective formation of a single atropisomer of meso-meso-linked ZnII diporphyrin through supramolecular self-assembly. Chem Eur J 15:9681–9684

    Article  CAS  Google Scholar 

  20. Ikbal SA, Brahma S, Rath SP (2012) Building-up remarkably stable magnesium porphyrin polymers self-assembled via bidentate axial ligands: synthesis, structure, surface morphology, and effect of bridging ligands. Inorg Chem 51:9666–9676

    Article  CAS  Google Scholar 

  21. Kumar RK, Goldberg I (1998) Supramolecular assembly of heterogeneous multiporphyrin arrays-structures of [{ZnII(tpp)}2(tpyp)] and the coordination polymer [{[MnIII(tpp)]2(tpyp)(ClO4)2}∞]. Angew Chem Int Ed 37:3027–3030

    Article  CAS  Google Scholar 

  22. Goldberg I (2000) Metalloporphyrin molecular sieves. Chem Eur J 6:3863–3870

    Article  CAS  Google Scholar 

  23. Griveau S, Bedioui F (2011) Chapter 55 in the porphyrin handbook, vol 12

    Google Scholar 

  24. Deronzier A, Latour JM (1987) A poly(pyrrole nickel(II)pyridiniums)-modified electrode. J Electroanal Chem 224:295–301

    Article  CAS  Google Scholar 

  25. Bettelheim A, White BA, Raybuck SA, Murray RW (1987) Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins. Inorg Chem 26:1009–1017

    Article  CAS  Google Scholar 

  26. Bedioui F, Merino A, Devynck J, Mestres CE, Bied Charreton C (1988) Poly(pyrrole-manganese tetraphenylporphyrin) film electrodes in acetonitrile solution. J Electroanal Chem 239:433–439

    Article  CAS  Google Scholar 

  27. Armengaud C, Moisy P, Bedioui F, Devynck J, Bied Charreton C (1990) Electrochemistry of conducting polypyrrole films containing cobalt porphyrin. J Electroanal Chem 277:197–211

    Article  CAS  Google Scholar 

  28. Bedioui F, Voisin M, Devynck J, Bied Charreton C (1991) Electrochemistry of conducting polypyrrole films containing cobalt porphyrin. J Electroanal Chem 297:257–269

    Article  CAS  Google Scholar 

  29. Ramachandraiah G, Bedioui F, Devynck J, Serrar M, Bied Charreton C (1991) Electrochemical preparation and characterization of zinc porphyrin-coated electrodes. J Electroanal Chem 324:325–337

    Google Scholar 

  30. Deronzier A, Devaux R, Limosin D, Latour JM (1992) Poly(pyrrole-metallotetraphenylporphyrin)-modified electrodes: part 2. J Electroanal Chem 324:325–337

    Article  CAS  Google Scholar 

  31. Deronzier A (1996) Modified electrodes by transition metal complexes. How and why? J Chim Phys Phys Chim Biol 93:611–619

    CAS  Google Scholar 

  32. Bedioui F, Devynck J, Bied Charreton C (1996) Electropolymerized manganese porphyrin films as catalytic electrode materials for biomimetic oxidations with molecular oxygen. J Mol Catal A 113:3–11

    Article  CAS  Google Scholar 

  33. De Medeiros MAC, Cosnier S, Deronzier A, Moutet JC (1996) Synthesis and characterization of a new series of Nickel(II) meso-Tetrakis (polyfluorophenyl)porphyrins functionalized by pyrrole groups and their electropolymerized films. Inorg Chem 35:2659–2664

    Article  Google Scholar 

  34. Cosnier S, Gondran C, Wessel R, Montforts FP, Wedel M (2000) Poly(pyrrole–metallodeuteroporphyrin)electrodes: towards electrochemical biomimetic devices. J Electroanal Chem 488:83–91

    Article  CAS  Google Scholar 

  35. Cosnier S, Gondran C, Wessel R, Montforts F-P, Wedel M (2003) A poly(pyrrole-Cobalt(II)deuteroporphyrin) electrode for the potentiometric determination of nitrite. Sensors 3:213–222

    Article  CAS  Google Scholar 

  36. Diab N, Schuhmann W (2001) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta 47:265–273

    Article  CAS  Google Scholar 

  37. Wedel M, Walter A, Monforts FP (2001) Synthesis of metalloporphyrins and metallochlorins for immobilization on electrode surfaces. Eur J Org Chem 9:1681–1687

    Google Scholar 

  38. Cosnier S, Gondran C, Gorgy K, Wessel R, Montforts FP, Wedel M (2002) Electrogeneration and characterization of a poly(pyrrole–nickel (II) chlorin) electrode. Electrochem Commun 4:426–430

    Article  CAS  Google Scholar 

  39. Shimidzu T (1995) Functionalized conjugating polymers: from molecule and ions transporting membranes to advanced electronic and photonic materials. Pure Appl Chem 67:2039–2046

    Article  CAS  Google Scholar 

  40. Shimidzu T, Iyoda T, Segawa H (1996) Advanced materials by functionalization of conjugated polymers. Macromol Symp 101:127–135

    Article  Google Scholar 

  41. Shimidzu T (1996) Approaches to polymer superlattice and molecular device. Macromol Symp 104:127–135

    Article  CAS  Google Scholar 

  42. Shimidzu T (1997) Approaches to ultimate functional polymer materials. Polym Adv Technol 8:275–280

    Article  CAS  Google Scholar 

  43. Schaferling M, Bauerle P (1999) Synthesis and properties of porphyrin-functionalized poly(bithiophenes). Synth Met 101:38–39

    Article  CAS  Google Scholar 

  44. Schaferling M, Bauerle P (2001) Electrochemical properties of porphyrin-functionalized polythiophene. Synth Met 119:289–290

    Article  CAS  Google Scholar 

  45. Too CO, Wallace GG, Burrell AK, Collis GE, Officer DL, Boge EW, Brodie SG, Evans E (2001) Photovoltaic devices based on polythiophenes and substituted polythiophenes. J Synth Met 123:53–60

    Article  CAS  Google Scholar 

  46. Yamashita K, Ikeda M, Takeuchi M, Shinkai S (2003) Electropolymerization of bithienyl-appended Cerium(III) triple decker porphyrin complex. Chem Lett 32:264–265

    Article  CAS  Google Scholar 

  47. De Medeiros MAC, Gorgy K, Deronzier A, Cosnier S (2008) Design of new electropolymerized polypyrrole films of polyfluorinated Zn(II) and Mn(III) porphyrins: towards electrochemical sensors. Mater Sci Eng C Biomim Supramol Syst 21:731–738

    Article  CAS  Google Scholar 

  48. Cosnier S, Deronzier A, Roland JF (1990) Polypyridinyl complexes of ruthenium(II) having 4,4’-dicarboxyester-2,2’-bipyridine ligands attached covalently to polypyrrole films. J Electroanal Chem 285:133–147

    Article  CAS  Google Scholar 

  49. Yuasa M, Oyaizu K, Yamaguchi A, Ishikawa M, Eguchi K, Kobayashi T, Toyoda Y, Tsutsui S (2005) Electrochemical sensor for superoxide anion radical using polymeric iron porphyrin complexes containing axial 1-methylimidazole ligand as cytochrome c mimics. Polym Adv Technol 16:287–292

    Article  CAS  Google Scholar 

  50. Lin CL, Fang MY, Cheng SH (2002) Substituent and axial ligand effects on the electrochemistry of zinc porphyrins. J Electroanal Chem 531:155–162

    Article  CAS  Google Scholar 

  51. Buttemeyer R, Philipp AW, Mall JW, Ge BX, Scheller FW, Lisdat F (2002) In vivo measurement of oxygen-derived free radicals during reperfusion injury. Microsurgery 22:108–113

    Article  Google Scholar 

  52. Gobi KV, Mizutani F (2000) Efficient mediatorless superoxide sensors using cytochrome c-modified electrodes: surface nano-organization for selectivity and controlled peroxidase activity. J Electroanal Chem (484):172–181

    Google Scholar 

  53. Lisdat F, Ge B, Ehrentreich-Forster E, Reszka R, Scheller FW (1999) Superoxide dismutase activity measurement using cytochrome c-modified electrode. Anal Chem 71:1359–1365

    Article  CAS  Google Scholar 

  54. Tammeveski K, Tenno TT, Mashirin AA, Hillhouse EW, Manning P, McNeil C (1998) Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. J Free Rad Biol Med 25:973–978

    Article  CAS  Google Scholar 

  55. Campanella L, Persi L, Tomassetti M (2000) A new tool for superoxide and nitric oxide radicals determination using suitable enzymatic sensors. Sens Actuators, B 68:351–359

    Article  CAS  Google Scholar 

  56. Scheller W, Jin W, Ehrentreich-Forster E, Ge B, Lisdat F, Buttemeier R, Wollenberger U, Scheller FW (1999) Cytochrome C based superoxide sensor for in vivo application. Electroanalysis 11:703–706

    Article  CAS  Google Scholar 

  57. Manning P, McNeil CJ, Cooper JM, Hillhouse EW (1998) Direct, real-time sensing of free radical production by activated human glioblastoma cells Free. Rad Biol Med 24:1304–1309

    Article  CAS  Google Scholar 

  58. McNeil CJ, Athey D, Ho WO (1995) Direct electron transfer bioelectronic interfaces: application to clinical analysis. Biosens Bioelec 10:75–83

    Article  CAS  Google Scholar 

  59. Cooper JM, Greenough KR, McNeil CJ (1993) Direct electron transfer reactions between immobilized cytochrome c and modified gold electrodes. J Electroanal Chem 347:267–275

    Article  CAS  Google Scholar 

  60. McNeil CJ, Greenough KR, Weeks PA, Self CH, Cooper JM (1992) Electrochemical sensors for direct reagentless measurement of superoxide production by human neutrophils. Free Rad Res Commun 17:399–406

    Article  CAS  Google Scholar 

  61. Jiang L, Glidle A, Griffith A, McNeil CJ, Cooper JM (1997) Characterising the formation of the bioelectrochemical interface at a self-assembled monolayer using X-ray photoelectron spectroscopy. Bioelec Bionerg 42:15–23

    Article  CAS  Google Scholar 

  62. Sato Y, Mizutani F (1997) Electrochemical responses of cytochrome c on a gold electrode modified with mixed monolayers of 3-mercaptopropionic acid and n-alkanethiol. 438:99–104

    Google Scholar 

  63. Sato Y, Mizutani F (2000) Electrochemical responses of cytochrome c on gold electrodes modified with nucleic acid base derivatives–electrochemical and quartz crystal microbalance studies. Electrochim Acta 45:2869–2875

    Article  CAS  Google Scholar 

  64. Gobi KV, Sato Y, Mizutani F (2001) Mediatorless superoxide dismutase sensors using cytochrome c-modified electrodes: xanthine oxidase incorporated polyion complex membrane for enhanced activity and in vivo analysis. Electroanalysis 13:397–403

    Google Scholar 

  65. Beissenhirtz MK, Kwan RCH, Ko KM, Renneberg R, Scheller FW, Lisdat F (2004) Comparing an In vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs. Phyt Res 18:149–153

    Article  Google Scholar 

  66. Medeiros MAC, Cosnier S, Deronzier A, Moutet J-C (1996) Synthesis and characterization of a new series of Nickel(II) meso-tetrakis (polyfluorophenyl)porphyrins functionalized by Pyrrole Groups and their electropolymerized films. Inorg Chem 34:2659–2664

    Article  Google Scholar 

  67. White BA, Murray RW (1985) Electroactive porphyrin films from electropolymerized mettalotetra(o-aminophenyl)porphyrins. J Electroanal Chem 89:345–352

    Article  Google Scholar 

  68. Macor KA, Su YO, Miller LA, Spiro TG (1987) Electrochemical and resonance Raman spectroscopic characterization of polyaniline and polyaniline-metalloporphyrin electrode films. Inorg Chem 26:2594–2598

    Article  CAS  Google Scholar 

  69. White BA, Murray RW (1987) Kinetics of electron self-exchange reactions between metalloporphyrin sites in submicrometer polymeric films on electrodes. J Am Chem Soc 109:2576–2581

    Article  CAS  Google Scholar 

  70. Daunert S, Wallace S, Florido A, Bachas LG (1991) Anion-selective electrodes based on electropolymerized porphyrin films. Anal Chem 63:1676–1679

    Article  CAS  Google Scholar 

  71. Kliza DM, Meyerhoff ME (1992) Potentiometric anion response of poly (tetrakis(p-aminophenyl)porphyrin) film-modified electrodes. Electroanalysis 4:841–849

    Article  CAS  Google Scholar 

  72. Hayon J, Raveh A, Bettelheim A (1993) Electrocatalytic properties of chemically polymerized films of cobalt, iron and manganese tetrakis(o-aminophenyl)porphyrins. J Electroanal Chem 359:209–221

    Article  CAS  Google Scholar 

  73. Armijo F, Goya MC, Gimeno Y, Arévalo MC, Aguirre MJ, Creus AH (2006) Study of the electropolymerization of tetrakis(3-aminophenyl)porphyrin Fe(III) chloride on Au electrodes by cyclic voltammetry and STM. Electrochem Commun 8:779–784

    Article  CAS  Google Scholar 

  74. Goya MC, Lucero M, Orive AG, Marín A, Gimeno Y, Creus AH, Aguirre MJ, Arévalo MC, Armijo F (2011) Surface effect on Fe (III)Poly-(Tetraaminophenyl) porphyrin modified electrodes after electrocatalytic reactions. An electrochemical and atomic force microscopy study. Int J Electrochem Sci 6:4984–4998

    CAS  Google Scholar 

  75. Bettelheim A, Soifer L, Korin E (2004) Electropolymerized porphyrin films as methanol barriers in direct methanol fuel cells. J Electroanal Chem 571:265–272

    Article  CAS  Google Scholar 

  76. Subbaiyan NK, Obraztsov I, Wijesinghe CA, Tran K, Kutner W, D’Souza F (2009) Supramolecular donor − acceptor hybrid of electropolymerized zinc porphyrin with axially coordinated fullerene: formation, characterization, and photoelectrochemical properties. J Phys Chem C 13:8982–8989

    Article  CAS  Google Scholar 

  77. Blair TL, Allen JR, Daunert S, Bachas LG (1993) Potentiometric and fiber optic sensors for pH based on an electropolymerized cobalt porphyrin. Anal Chem 65:2155–2158

    Article  CAS  Google Scholar 

  78. Savenije TJ, Koehorst RBM, Schaafsma TJ (1997) Spectroelectrochemical measurement of charge transport properties of electropolymerized tetrakis(hydroxyphenyl)porphyrins. J Phys Chem B 101:720–725

    Article  CAS  Google Scholar 

  79. Malinski T, Ciszewski A, Bennett J, Fish JR, Czuchajowski L (1991) Characterization of conductive polymeric nickel(II) tetrakis(3-methoxy-4-hydroxy-phenyl)porphyrin as an anodic material for electrocatalysis. J Electrochem Soc 138:2008–2015

    Article  CAS  Google Scholar 

  80. Malinski T, Ciszewski A, Fish J, Kubaszewski E, Czuchajowski L (1992) Conductive polymeric Cu(II) tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin as a photosensitizer in a photoelectrochemical cell. Adv Mater 4:354–357

    Article  CAS  Google Scholar 

  81. Fish JR, Kubaszewski E, Peat A, Malinski T, Kaczor J, Kus P, Czuchajowski L (1992) Synthesis and electrochemistry of conductive copolymeric porphyrins. Chem Mater 4:795–803

    Article  CAS  Google Scholar 

  82. Macor KA, Spiro TG (1983) Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins. J Am Chem Soc 105:5601–5607

    Article  CAS  Google Scholar 

  83. Macor KA, Spiro TG (1984) Oxidative electrochemistry of electropolymerized metalloprotoporphyrin films. J Electroanal Chem 163:223–236

    Article  CAS  Google Scholar 

  84. Basu J, Rohatgimukherjee KK (1988) Photoelectrocehmical studies of metalloporphyrins. Photochem Photobiol 48:417–422

    Article  CAS  Google Scholar 

  85. Basu J, Rohatgimukherjee KK (1991) Photoelectrochemical characterization of porphyrin-coated electrodes. Sol Energy Mater 21:317–325

    Article  CAS  Google Scholar 

  86. Younathan JN, Wood KS, Meyer T (1992) Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg Chem 31:3280–3285

    Article  CAS  Google Scholar 

  87. Czuchajowski L, Bennett JE, Goszczynski S, Wheeler DE, Wisor AK, Malinski T (1989) Meso-[2.2]Paracyclophenyltriphenylporphyrin. Electronic consequences of linking paracycliphane to porphyrin. J Am Chem Soc 111:607–616

    Article  CAS  Google Scholar 

  88. Paul-Roth C, Rault-Berthelot J, Simonneaux G (2004) New polymers for catalytic carbene transfer: electropolymerization of tetrafluorenylporphyrinruthenium carbon monoxide. Tetrahedron 60:12169–12175

    Article  CAS  Google Scholar 

  89. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2008) Electropolymerization of a new optically active iron tetraspirobifluorenyl porphyrin. Synth Met 158:796–801

    Article  CAS  Google Scholar 

  90. Ferrand Y, Poriel C, Le Maux P, Rault-Berthelot J, Simonneaux G (2005) Asymmetric heterogeneous Carbene transfer catalyzed by optically active ruthenium spirobifluorenylporphyrin polymers. Tetrahedron Asymmetry 16:1463–1472

    Article  CAS  Google Scholar 

  91. Poriel C, Ferrand Y, Le Maux P, Paul C, Rault-Berthelot J, Simonneaux G (2003) Poly(ruthenium carbonyl spirobifluorenylporphyrin): a new polymer used as a catalytic device for carbene transfer. Chem Comm 18:2308–2309

    Google Scholar 

  92. Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2004) Organic cross-linked electropolymers as supported oxidation catalysts: poly((tetrakis(9,9’-spirobifluorenyl)porphyrin)manganese) films. Inorg Chem 43:5086–5095

    Article  CAS  Google Scholar 

  93. Chen SM, Chen YL (2004) The electropolymerization and electrocatalytic properties of polymerized MnTAPP film modified electrodes in aqueous solutions. J Electroanal Chem 573:277–287

    Article  CAS  Google Scholar 

  94. Holmes-Smith AS, Zheng X, Uttamlal M (2006) Characterization of an electropolymerized Pt(II) diamino phenyl porphyrin polymer suitable for oxygen sensing. Meas Sci Technol 17:3328–3334

    Article  CAS  Google Scholar 

  95. Walter MG, Wamser CC (2010) Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films. J Phys Chem C 114:7563–7574

    Article  CAS  Google Scholar 

  96. Winnischofer H, Lima SS, Araki K, Toma HE (2003) Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal Chim Acta 480:97–107

    Article  CAS  Google Scholar 

  97. Toma HE (2003) Molecular materials and devices: developing new functional systems based on the coordination chemistry approach. J Braz Chem Soc 14:845–869

    Article  CAS  Google Scholar 

  98. Winnischofer H, Formiga ALB, Nakamura M, Toma HE, Araki K, Nogueira AF (2005) Conduction and photoelectrochemical properties of monomeric and electropolymerized tetraruthenated porphyrin films. Photobio Sci 4:359–366

    Google Scholar 

  99. Huang S-C, Lin C-Y (2015) Reductive electropolymerization of N-methyl-3-pyridylethynyl-porphyrins. Chem Commun 51:519–521

    Article  CAS  Google Scholar 

  100. Schaming D, Marggi-Poullain S, Ahmed I, Farha R, Goldmann M, Gisselbrecht J-P, Ruhlmann L (2011) Electrosynthesis and electrochemical properties of porphyrin dimers with pyridinium as bridging spacer. New J Chem 35:2534–2543

    Article  CAS  Google Scholar 

  101. Dolphin D, Felton RH (1974) The biological significance of porphyrin π-cation radicals. Acc Chem Res 7:26–32

    Article  CAS  Google Scholar 

  102. Dolphin D, Muljiani Z, Rousseau K, Borg DC, Fajer J, Felton RH (1976) The chemistry of porphyrin π-cations. Ann NY Acad Sci 206:177–200

    Article  Google Scholar 

  103. Barnett GH, Smith KM (1974) Reactions of some metalloporphyrin and metallochlorin π-cation radicals with nitrite. J Chem Soc Chem Commun 19:772–773

    Google Scholar 

  104. Barnett GH, Evans B, Smith KM, Besecke S, Fuhrhop J-H (1976) Synthesis of meso-pyridinium porphyrin salts. Tetrahedron Lett 44:4009–4012

    Article  Google Scholar 

  105. Evans B, Smith KM (1977) Novel meso-substitution reactions of zinc(II) octaethylporphyrin. Tetrahedron Lett 35:3079–3082

    Article  Google Scholar 

  106. Smith KM, Barnett GH, Evans B, Martynenko Z (1979) Novel meso-substitution reactions of metalloporphyrins. J Am Chem Soc 101:5953–5961

    Article  CAS  Google Scholar 

  107. Padilla AG, Wu S-M, Shine HJ (1976) Reaction of zinc tetraphenylporphyrin cation radical perchlorate with pyridine. J Chem Soc Chem Commun 7:236–237

    Google Scholar 

  108. Shine HJ, Padilla AG, Wu S-M (1979) Ion radicals. 45. Reactions of zinc tetraphenylporphyrin cation radical perchlorate with nucleophiles. J Org Chem 44:4069–4075

    Article  CAS  Google Scholar 

  109. Malek A, Latos-Grazynski L, Bartczak TJ, Zadlo A (1991) Reactions of the iron(III) tetraphenylporphyrin π _cation radical with triphenylphosphine and the nitrite ion. Formation of β-substituted iron(III) porphyrins. Inorg Chem (30):3222–3230

    Google Scholar 

  110. Rachlewicz K, Latos-Grazynski L (1995) Novel reactions of iron(III) tetraphenylporphyrin π-cation radicals with pyridine. Inorg Chem 34:718–727

    Article  CAS  Google Scholar 

  111. Zhang W, Wicks MN, Burn PL (2008) Regiospecific b-functionalization of free-base porphyrins by pseudohalogens. Org Biomol Chem 6:879–886

    Article  CAS  Google Scholar 

  112. El Kahef L, El Meray M, Gross M, Giraudeau A (1986) Electrochemical synthesis of β-pyridinium zinc tetraphenylporphyrin. J Chem Soc Chem Commun 8:621–622

    Article  Google Scholar 

  113. Giraudeau A, Ruhlmann L, El-Kahef L, Gross M (1996) Electrosynthesis and characterization of symmetrical and unsymmetrical linear porphyrin dimers and their precursor monomers. J Am Chem Soc 118:2969–2979

    Article  CAS  Google Scholar 

  114. El Kahef L, Gross M, Giraudeau A (1989) β-substitutions on meso-tetraphenylporphyrin by direct electrochemical oxidation in the presence of nucleophiles. J Chem Soc, Chem Commun 14:963

    Article  Google Scholar 

  115. Kadish KM, Rhodes RK (1981) Reactions of metalloporphyrins π-radicals. 2. Thin-layer spectroelectrochemistry of zinc tetraphenylporphyrin cation radicals and dications in the presence of nitrogenous bases. Inorg Chem 20:2961–2966

    Article  CAS  Google Scholar 

  116. Giraudeau A, El Kahef L (1991) β-substitution de la méso-tétraphénylporphyrine de zinc par voie électrochimique. Can J Chem 69:1161–1165

    Article  CAS  Google Scholar 

  117. Giraudeau A, Callot HJ, Gross M (1979) Effects of electron-withdrawing substituents on the electrochemical oxidation of porphyrins. Inorg Chem 18:201–206

    Article  CAS  Google Scholar 

  118. Schaming D, Giraudeau A, Lobstein S, Farha R, Goldmann M, Gisselbrecht J-P, Ruhlmann L (2009) Electrochemical behavior of the tetracationic porphyrins (py)ZnOEP(py)44+4PF -6 and ZnOEP(py) 4+4 Cl-. J Electroanal Chem 635:20–28

    Article  CAS  Google Scholar 

  119. Schaming D, Giraudeau A, Ruhlmann L (2012) Reactivity of porphyrin radical cations and dications towards nucleophiles: an easy and original electrochemical method for the synthesis of subtituted, oligomeric and polymeric porphyrin systems. In: Kaibara A, Matsumara G (eds) Handbook of porphyrins: chemistry, properties and applications. Nova Publishers, USA

    Google Scholar 

  120. Giraudeau A, Lobstein S, Ruhlmann L, Melamed D, Barkigia KM, Fajer J (2001) Electrosynthesis, electrochemistry, and crystal structure of the tetracationic Zn-meso-tetrapyridiniumyl-β-octaethylporphyrin. J Porphyrins Phthalocyanines 5:793–797

    Article  CAS  Google Scholar 

  121. Callot HJ, Louati A, Gross M (1980) Electrochemical cyanation of porphyrins: meso-mono to tetracyanooctaethylporphyrins. Tetrahedron Lett 21:3281–3284

    Article  CAS  Google Scholar 

  122. Devillers CH, Dime AKD, Cattey H, Lucas D (2011) Electrochemical meso-fonctionalization of magnesium(II) porphine. Chem Commun 47:1893–1895

    Article  CAS  Google Scholar 

  123. Prendergast K, Spiro TG (1991) Predicted geometries of porphyrin excited states and radical cations and anions. J Phys Chem 95:9728–9736

    Article  CAS  Google Scholar 

  124. Skillman AG, Collins JR, Loew GH (1992) Magnesium porphyrin radical cations: a theoretical study of substituent effects on the ground state. J Am Chem Soc 114:9538–9544

    Article  CAS  Google Scholar 

  125. Ishizuka T, Ikeda S, Toganoh M, Yoshida I, Ishikawa Y, Osuka A, Furuta H (2008) Substitution, dimerization, metalation, and ring-opening reactions of N-fused porphyrins. Tetrahedron 64:4037–4050

    Article  CAS  Google Scholar 

  126. Youfu K, Osuka A (2005) Phosphonium ylides from nucleophilic addition of triphenylphosphine to [26]hexaphyrin(1.1.1.1.1.1). Org Lett 7:4381–4384

    Article  CAS  Google Scholar 

  127. Stefanelli M, Nardis S, Tortora L, Fronczek FR, Smith KM, Licoccia S, Paolesse R (2011) Nitration of iron corrolates: further evidence for non-innocence of the corrole ligand. Chem Commun 47:4255–4257

    Article  CAS  Google Scholar 

  128. Stefanelli M, Mastroianni M, Nardis S, Licoccia S, Fronczek FR, Smith KM, Zhu W, Ou Z, Kadish KM, Paolesse R (2007) Functionalization of corroles: the nitration reaction. Inorg Chem 46:10791–10799

    Article  CAS  Google Scholar 

  129. Ruhlmann L, Lobstein S, Gross M, Giraudeau A (1999) An electrosynthetic path toward pentaporphyrins. J Org Chem 64:1352–1355

    Article  CAS  Google Scholar 

  130. Schaming D, Xia Y, Thouvenot R, Ruhlmann L (2013) An original electrochemical pathway for the synthesis of porphyrin oligomers. Chem Eur J 19:1712–1719

    Article  CAS  Google Scholar 

  131. Ruhlmann L, Giraudeau A (1996) One-pot electrochemical generation of a porphyrin dimer with a bis(diphenylphosphonium)acetylene bridge. Chem Commun 17:2007–2008

    Google Scholar 

  132. Ruhlmann L, Giraudeau A (2001) A first series of dimeric porphyrins electrochemically linked with diphosphonium bridges. Eur J Inorg Chem 13:659–668

    Google Scholar 

  133. Ruhlmann L, Gross M, Giraudeau A (2003) Bisporphyrins with bischlorin features obtained by direct anodic coupling of porphyrins. Chem Eur J 9:5085–5096

    Article  CAS  Google Scholar 

  134. Ruhlmann L, Schulz A, Giraudeau A, Messerschmidt C, Fuhrhop J-H (1999) A polycationic zinc-5,15-dichlorooctaethylporphyrinate-viologen wire. J Am Chem Soc 121:6664–6667

    Article  CAS  Google Scholar 

  135. Ruhlmann L, Hao J, Ping Z, Giraudeau A (2008) Self-oriented polycationic copolymers obtained from bipyridinium meso-substituted-octaethylporphyrins. J Electroanal Chem 621:22–30

    Article  CAS  Google Scholar 

  136. Liddell PA, Gervaldo M, Bridgewater JW, Keirstead AE, Lin S, Moore TA, Moore AL, Gust D (2008) Porphyrin-based hole conducting electropolymer. Chem Mater 20:135–142

    Article  CAS  Google Scholar 

  137. Gervaldo M, Liddell PA, Kodis G, Brennan BJ, Johnson CJ, Bridgewater LW, Moore AL, Moore TA, Gust D (2010) A photo- and electrochemically-active porphyrin-fullerene dyad electropolymer. Photochem Photobiol Sci 9:890–900

    Article  CAS  Google Scholar 

  138. Schaming D, Ahmed I, Hao J, Alain-Rizzo V, Farha R, Goldmann M, Xu H, Giraudeau A, Audebert P, Ruhlmann L (2011) Easy methods for the electropolymerization of porphyrins based on the oxidation of the macrocycles. Electrochim Acta 56:10454–10463

    Article  CAS  Google Scholar 

  139. Xia Y, Schaming D, Farha R, Goldmann M, Ruhlmann L (2012) Bis-porphyrin copolymers covalently linked by pyridinium spacers obtained by electropolymerization from β-octaethylporphyrins and pyridyl-substituted porphyrins. New J Chem 36:588–596

    Article  CAS  Google Scholar 

  140. Schaming D, Allain C, Farha R, Goldmann M, Lobstein S, Giraudeau A, Hasenknopf B, Ruhlmann L (2010) Synthesis and photocatalytic properties of mixed polyoxometalate-porphyrin copolymers obtained from Anderson-type polyoxomolybdates. Langmuir 26:5101–5109

    Article  CAS  Google Scholar 

  141. Giraudeau A, Schaming D, Hao J, Farha R, Goldmann M, Ruhlmann L (2010) A simple way for the electropolymerization of porphyrins. J Electroanal Chem 638:70–75

    Article  CAS  Google Scholar 

  142. Huo Z, Gisselbrecht J-P, Farha R, Goldmann M, Saint-Aman E, Bucher C, Ruhlmann L (2014) Alternating electro-copolymerization of zinc-β-octaethylporphyrin with a flexible bipyridinium. Electrochem Acta 122:108–117

    Article  CAS  Google Scholar 

  143. Leroux Y, Schaming D, Ruhlmann L, Hapiot P (2010) SECM investigations of immobilized porphyrins films. Langmuir 26:14983–14989

    Article  CAS  Google Scholar 

  144. Azcarate I, Ahmed I, Farha R, Goldmann M, Wang X, Xu H, Hasenknopf B, Lacôte E, Ruhlmann L (2013) Synthesis and characterization of conjugated Dawson-type polyoxometalate-porphyrin copolymers. Dalton Trans 42:12688–12698

    Article  CAS  Google Scholar 

  145. Schaming D, Costa-Coquelard C, Sorgues S, Ruhlmann L, Lampre I (2010) Photocatalytic reduction of Ag2SO4 by electrostatic complexes formed by tetracationic zinc porphyrins and tetracobalt Dawson-derived sandwich polyanion. Appl Catal A: Gen 373:160–167

    Article  CAS  Google Scholar 

  146. Schaming D, Farha R, Xu H, Goldmann M, Ruhlmann L (2011) Formation and photocatalytic properties of nanocomposite films containing both tetracobalt Dawson-derived sandwich polyanions and tetracationic porphyrins. Langmuir 27:132–143

    Article  CAS  Google Scholar 

  147. Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) Molecular photovoltaic system on Dawson type polyoxometalate and porphyrin formed by layer-by-layer self assembly. Chem Commun 49:496–498

    Article  CAS  Google Scholar 

  148. Yoshida N, Shimidzu K, Osuka A (1998) Meso-meso linked diporphyrins from 5,10,15-trisubstituted porphyrins. Chem Lett 1:55–56

    Article  Google Scholar 

  149. Wojaczynski J, Latos-Grazynski L, Chmielewski PJ, Van Calcar P, Balch AL (1999) 1H NMR investigations of triphenylporphyrin metal complexes and electronic interactions in iron(III) complexes of meso-meso-linked 5,5’-bis(10,15,20-triphenylporphyrin). Inorg Chem 38:3040–3050

    Article  CAS  Google Scholar 

  150. Shi X, Liebeskind LS (2000) 3-cyclobutenyl-1,2-dione-substituted porphyrins. 2. A simple and general entry to quinone-porphyrin-porphyrin-quinone tetrads and related molecules. J Org Chem 65:1665–1671

    Article  CAS  Google Scholar 

  151. Senge MO, Feng X (2000) Regioselective reaction of 5,15-disubstituted porphyrins with organolithium reagents-synthetic access to 5,10,15-trisubstituted porphyrins and directly meso-meso-linked bisporphyrins. J Chem Soc Perkin Trans 1:3615–3621

    Article  Google Scholar 

  152. Takai A, Habermeyer B, Fukuzumi S (2011) Facile formation of a meso-meso linked porphyrin dimer catalyzed by a manganese(IV)-oxo porphyrin. Chem Commun 47:6804–6806

    Article  CAS  Google Scholar 

  153. Park JK, Chen J, Lee HR, Park SW, Shinokubo H, Osuka A, Kim D (2009) Doubly β-functionalized meso-meso directly linked porphyrin dimer sensitizers for photovoltaics. J Phys Chem C 113:21956–21963

    Article  CAS  Google Scholar 

  154. Osuka A, Shimidzu H (1997) meso, meso-linked porphyrin arrays. Angew Chem Int Ed Engl 36:135–137

    Article  CAS  Google Scholar 

  155. Aratani N, Takagi A, Yanagawa Y, Matsumoto T, Kawai T, Yoon ZS, Kim D, Osuka A (2005) Giant meso-meso-linked porphyrin arrays of micrometer molecular length and their fabrication. Chem Eur J 11:3389–3404

    Article  CAS  Google Scholar 

  156. Nakamura Y, Hwang I-W, Aratani N, Ahn TK, Ko DM, Takagi A, Kawai T, Matsumoto T, Kim D, Osuka A (2005) Directly meso-meso linked porphyrin rings: synthesis, characterization, and efficient excitation energy hopping. J Am Chem Soc 127:236–246

    Article  CAS  Google Scholar 

  157. Tsuda A, Nakano A, Furuta H, Yamochi H, Osuka A (2000) Doubly meso-β-linked diporphyrins from oxidation of 5,10,15-triaryl-substituted NiII- and PdII-porphyrins. Angew Chem Int Ed 39:558–561

    Article  CAS  Google Scholar 

  158. Tsuda A, Furuta H, Osuka A (2001) Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. J Am Chem Soc 123:10304–10321

    Article  CAS  Google Scholar 

  159. Sahoo AK, Nakamura Y, Aratani N, Kim KS, Noh SB, Shinokubo H, Kim D, Osuka A (2006) Synthesis of brominated directly fused diporphyrins through gold(III)-mediated oxidation. Org Lett 8:4141–4144

    Article  CAS  Google Scholar 

  160. Ouyang Q, Zhu Y-Z, Zhang C-H, Yan K-Q, Li Y-C, Zheng J-Y (2009) An efficient PIFA-mediated synthesis of fused diporphyrin and triply-singly interlacedly linked porphyrin array. Org Lett 11:5266–5269

    Article  CAS  Google Scholar 

  161. Brennan BJ, Kenny MJ, Liddell PA, Cherry BR, Li J, Moore AL, Moore TA, Gust D (2011) Oxidative coupling of porphyrins using copper(II) salts. Chem Commun 47:10034–10036

    Article  CAS  Google Scholar 

  162. Bonifazi D, Spillmann H, Kiebele A, de Wild M, Seiler P, Cheng F, Güntherodt H-J, Jung T, Diederich F (2004) Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew Chem Int Ed 43:4759–4763

    Article  CAS  Google Scholar 

  163. Bonifazi D, Kiebele A, Stöhr M, Cheng F, Jung T, Diederich F, Spillmann H (2007) Supramolecular nanostructuring of silver surfaces via self-assembly of [60]fullerene and porphyrin modules. Adv Funct Mater 17:1051–1062

    Article  CAS  Google Scholar 

  164. Cheng F, Zhang S, Adronov A, Echegoyen L, Diederich F (2006) Triply fused ZnII-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs). Chem Eur J 12:6062–6070

    Article  CAS  Google Scholar 

  165. Nakamura Y, Aratani N, Shinokubo H, Takagi A, Kawai T, Matsumoto T, Yoon ZS, Kim DY, Ahn TK, Kim D, Muranaka A, Kobayashi N, Osuka A (2006) A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J Am Chem Soc 128:4119–4127

    Article  CAS  Google Scholar 

  166. Kang BK, Aratani N, Lim JK, Kim D, Osuka A, Yoo K-H (2006) Electrical transport properties and their reproducibility for linear porphyrin arrays. Mat Sci Eng C 26:1023–1027

    Article  CAS  Google Scholar 

  167. Sankar J, Rath H, Prabhuraja V, Gokulnath S, Chandrashekar TK, Purohit CS, Verma S (2007) meso-meso-linked corrole dimers with modified cores: synthesis, characterization, and properties. Chem Eur J 13:105–114

    Article  CAS  Google Scholar 

  168. Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osukua A (1998) One-pot electrochemical formation of meso,meso-linked porphyrin arrays. Chem Commun 3:337–338

    Google Scholar 

  169. Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osuka A (1999) Completely regioselective synthesis of directly linked meso, meso and meso, β-porphyrin dimers by one-pot electrochemical oxidation of metalloporphyrins. Angew Chem Int Ed 38:176–179

    Article  CAS  Google Scholar 

  170. Dime AKD, Devillers CH, Cattey H, Habermeyer B, Lucas D (2012) Control over the oxidative reactivity of metalloporphyrins. Efficient electrosynthesis of meso, meso-linked zinc porphyrin dimer. Dalton Trans 41:929–936

    Article  CAS  Google Scholar 

  171. Yoshida N, Aratani N, Osuka A (2000) Poly(zinc(II)-5,15-porphyrinylene) from silver(I)-promoted oxidation of zinc(II)-5,15-diarylporphyrins. Chem Commun 3:197–198

    Google Scholar 

  172. Devillers CH, Lucas D, Dime AKD, Rousselin Y, Mugnier Y (2012) Exploring the redox reactivity of magnesium porphine. Insight into the origins of electropolymerisation. Dalton Trans 39:2404–2411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delphine Schaming or Laurent Ruhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaming, D., Ruhlmann, L. (2016). Electrosynthesis of Oligo- and Polyporphyrins Based on Oxidative Coupling of Macrocycles. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_10

Download citation

Publish with us

Policies and ethics