Skip to main content

Supramolecular Hybrid Organic/Inorganic Nanomaterials Based on Metalloporphyrins and Phthalocyanines

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

Metalloporphyrins and phthalocyanines have remarkable electrocatalytic properties, generally associated with the ring coordinated transition metal ion, which can be further improved based on supramolecular approach, by combination with suitable molecular ancillary groups. Among the possibilities, transition metal complexes such as ferrocene and ruthenium polypyridine complexes, as well as bisthiophene, dendrimers, and other macrocycles. For example, the electrochemical and photoinduced electron transfer properties of metalloporphyrin-dendrimer based systems (metalloporphyrin in dendrimer core, branches or periphery) are affected by dendrimer structure. The dendrimers at higher generations are globular structures providing many possibilities to arrange electroactive groups in different microenvironments giving rise to new properties and functionalities. Phenylazomethine dendrimers with a cobalt porphyrin core was applied for catalytic CO2 reduction in the presence of Lewis acid at relatively low overpotentials, due to the synergetic effect of the assembled metal ions and the porphyrin core involving a multielectron transfer process. That strategy has been extended by associating them with nanoparticles opening broad new perspectives in porphyrin and phthalocyanine chemistry. In fact, the combination with carbon, metals, sulfides, and oxides-based nanoparticles, as well as lamellar materials, is generating a whole new series of hybrid organic/inorganic nanomaterials with enhanced electrochemical, electrocatalytic, and photocatalytic properties. For example, porphyrin nanocomposites with lamellar materials such as vanadium pentoxide xerogels were explored as chemical vapor sensors. Ethinyl metalloporphyrin derivatives have been anchored to carbon nanotubes by electropolymerization, and the hybrid nanomaterial was shown to exhibit enhanced electroanalytic activity for tetraelectronic reduction of dioxygen. The electropolymerization of meso-tetra(4-sulfonatophenyl)porphyrinate manganese(III) in the presence of minute amounts of AgCl in alkaline solution was performed generating nanoflakes of MnTPPS decorated with MnO2 and silver nanoparticles, showing high electrocatalytic activity and sensitivity in hydrazine amperometric sensors. Also, porphyrins have been bond to carbon nanotubes, carbon nanohorns, graphene and graphene oxide, as well as fullerenes, generating interesting material for electrochemical and light-harvesting devices. The previous account (2006) was focused on the electrochemical modulation of electrocatalytic, as well as interaction and conduction properties, by electronic effects induced by ancillary groups, more specifically transition metal complexes. Now, a clear tendency of incorporating porphyrins and other macrocycles in nanosystems generating hybrid organic/inorganic nanomaterials is observed, widening the scope and perspectives in the porphyrin and phthalocyanine chemistry, as well as their electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishihara S, Labuta J, Van Rossom W, Ishikawa D, Minami K, Hill JP, Ariga K (2014) Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys Chem Chem Phys 16(21):9713–9746

    Article  CAS  Google Scholar 

  2. Torre G, Bottari G, Sekita M, Hausmann A, Guldi DM, Torres T (2013) A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins. Chem Soc Rev 42:8049–8105

    Article  CAS  Google Scholar 

  3. Leznoff CC, Lever ABP (eds) (1997) Phthalocyanines, properties and applications, vol 4. Wiley, New York

    Google Scholar 

  4. Araki K, Toma HE (2006) Supramolecular porphyrins as electrocatalysts. In: Zagal J, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 255–314

    Chapter  Google Scholar 

  5. Araki K, Toma HE (2009) Supramolecular porphyrin model compounds for cytochrome p-450, cytochrome-c oxidase and photosynthetic systems. In: Merce ALR, Felcman J, Recio MAL (eds) Molecular and supramolecular bioinorganic chemistry: applications in medical sciences. Nova Science Publishers, New York, pp 83–136

    Google Scholar 

  6. Toma HE, Araki K (2009) Exploring the supramolecular coordination chemistry-based approach for nanotechnology. In: Karlin KD (ed) Progress in inorganic chemistry, vol 56. Wiley, Hoboken, pp 379–485

    Google Scholar 

  7. Balzani V, Bergamini G, Ceroni P (2008) From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coord Chem Rev 252(23–24):2456–2469

    Article  CAS  Google Scholar 

  8. Yamada Y, Okamoto M, Furukawa K, Kato T, Tanaka K (2012) Switchable intermolecular communication in a four-fold rotaxane. Angew Chem Int Ed 51(3):709–713

    Article  CAS  Google Scholar 

  9. Yamada Y, Mihara N, Shibano S, Sugimoto K, Tanaka K (2013) Triply stacked heterogeneous array of porphyrins and phthalocyanine through stepwise formation of a fourfold rotaxane and an ionic complex. J Am Chem Soc 135(31):11505–11508

    Article  CAS  Google Scholar 

  10. Hamer M, Tomba JP, Rezzano IN (2014) Optical properties and sensor applications of bimetallic nanostructures of porphyrins. Sens Actuators, B 193:121–127

    Article  CAS  Google Scholar 

  11. Toma HE, Araki K (2000) Supramolecular assemblies of ruthenium complexes and porphyrins. Coord Chem Rev 196(1):307–329

    Article  CAS  Google Scholar 

  12. Toma HE, Araki K, Alexiou ADP, Nikolaou S, Dovidauskas S (2001) Monomeric and extended oxo-centered triruthenium clusters. Coord Chem Rev 219:187–234

    Article  Google Scholar 

  13. Araki K, Dovidauskas S, Winnischofer H, Alexiou ADP, Toma HE (2001) A new highly efficient tetra-electronic catalyst based on a cobalt porphyrin bound to four mu(3)-oxo-ruthenium acetate clusters. J Electroanal Chem 498(1–2):152–160

    Article  CAS  Google Scholar 

  14. Araki K, Winnischofer H, Viana HEB, Toyama MM, Engelmann FM, Mayer I, Formiga ALB, Toma HE (2004) Enhanced electrochemical and electrocatalytic activity of a new supramolecular manganese-porphyrin species containing four bis(bipyridine)(aqua)ruthenium(II) complexes. J Electroanal Chem 562(2):145–152

    Article  CAS  Google Scholar 

  15. Winnischofer H, Otake VY, Dovidauskas S, Nakamura M, Toma HE, Araki K (2004) Supramolecular tetracluster-cobalt porphyrin: a four-electron transfer catalyst for dioxygen reduction. Electrochim Acta 49(22–23):3711–3718

    Google Scholar 

  16. Dovidauskas S, Toma HE, Araki K, Sacco HC, Iamamoto Y (2000) (5,10,15,20-Tetra(4-pyridil)porphinato)manganes(III) acetate modified by four mu(3)-oxo-triruthenium acetate clusters: synthesis, characterization, electrochemical behavior and catalytic activity. Inorg Chim Acta 305(2):206–213

    Google Scholar 

  17. Nunes GS, Mayer I, Toma HE, Araki K (2005) Kinetics and mechanism of cyclohexane oxidation catalyzed by supramolecular manganese(III) porphyrins. J Catal 236(1):55–61

    Google Scholar 

  18. Nogueira AF, Formiga ALB, Winnischofer H, Nakamura M, Engelmann FM, Araki K, Toma HE (2004) Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO2 films. Photochem Photobiol Sci 3(1):56–62

    Article  CAS  Google Scholar 

  19. Nogueira AF, Furtado LFO, Formiga ALB, Nakamura M, Araki K, Toma HE (2004) Sensitization of TiO2 by supramolecules containing zinc porphyrins and ruthenium-polypyridyl complexes. Inorg Chem 43(2):396–398

    Article  CAS  Google Scholar 

  20. Parussulo ALA, Iglesias BA, Toma HE, Araki K (2012) Sevenfold enhancement on porphyrin dye efficiency by coordination of ruthenium polypyridine complexes. Chem Commun 48(55):6939–6941

    Google Scholar 

  21. Araki K, Losco P, Engelmann FM, Winnischofer H, Toma HE (2001) Modulation of vectorial energy transfer in the tetrakis[tris(bipyridine)ruthenium(II)]porphyrinate zinc complex. J Photochem Photobiol A 142(1):25–30

    Article  CAS  Google Scholar 

  22. Azevedo CMN, Araki K, Angnes L, Toma HE (1998) Electrostatically assembled films for improving the properties of tetraruthenated porphyrin modified electrodes. Electroanal 10(7):467–471

    Article  CAS  Google Scholar 

  23. Mayer I, Nakamura M, Toma HE, Araki K (2006) Multielectronic redox and electrocatalytic supramolecular films based on a tetraruthenated iron porphyrin. Electrochim Acta 52(1):263–271

    Article  CAS  Google Scholar 

  24. Martins PR, Popolim WD, Nagato LAF, Takemoto E, Araki K, Toma HE, Angnes L, Penteado MDVC (2011) Fast and reliable analyses of sulphite in fruit juices using a supramolecular amperometric detector encompassing in flow gas diffusion unit. Food Chem 127(1):249–255

    Article  CAS  Google Scholar 

  25. Matsumoto MY, Toyama MM, Mayer I, Winnischofer H, Araki K, Toma HE (2009) Electronic conduction and electrocatalysis by supramolecular tetraruthenated copper porphyrazine films. J Braz Chem Soc 20:728–736

    Google Scholar 

  26. Dreyse PA, Isaacs MA, Iturriaga PE, Villagra DA, Aguirre MJ, Kubiak CP, Glover SD, Goeltz JC (2010) Electrochemical preparation of conductive films of tetrapyridylporphyrins coordinated to four [Ru(5-NO2-phen)2Cl]+ groups. J Electroanal Chem 648(2):98–104

    Article  CAS  Google Scholar 

  27. Azevedo CMN, Araki K, Toma HE, Angnes L (1999) Determination of sulfur dioxide in wines by gas-diffusion flow injection analysis utilizing modified electrodes with electrostatically assembled films of tetraruthenated porphyrin. Anal Chim Acta 387(2):175–180

    Article  CAS  Google Scholar 

  28. Winnischofer H, Formiga ALB, Nakamura M, Toma HE, Araki K, Nogueira AF (2005) Conduction and photoelectrochemical properties of monomeric and electropolymerized tetraruthenated porphyrin films. Photochem Photobiol Sci 4(4):359–366

    Article  CAS  Google Scholar 

  29. Winnischofer H, Lima SD, Araki K, Toma HE (2003) Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal Chim Acta 480(1):97–107

    Article  CAS  Google Scholar 

  30. Dreyse P, Isaacs M, Calfumán K, Cáceres C, Aliaga A, Aguirre MJ, Villagra D (2011) Electrochemical reduction of nitrite at poly-[Ru(5-NO2-phen)2Cl] tetrapyridylporphyrin glassy carbon modified electrode. Electrochim Acta 56(14):5230–5237

    Article  CAS  Google Scholar 

  31. Dreyse P, Quezada D, Honores J, Aguirre MJ, Mendoza L, Matsuhiro B, Villagra D, Isaacs M (2012) Determination of S(IV) oxoanions at Poly[Ru(5-NO2-Phen)2Cl] tetrapyridylporphyrin glassy carbon modified electrode. Electroanal 24(8):1709–1718

    CAS  Google Scholar 

  32. Calfumán K, Aguirre M, Villagra D, Yañez C, Arévalo C, Matsuhiro B, Mendoza L, Isaacs M (2010) Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions. J Solid State Electrochem 14(6):1065–1072

    Article  CAS  Google Scholar 

  33. Calfumán K, García M, Aguirre MJ, Matsuhiro B, Mendoza L, Isaacs M (2010) Electrochemical reduction of S(IV) compounds in water-ethanol solutions at nafion/tetraruthenated porphyrins glassy carbon modified electrodes. Electroanal 22(3):338–344

    Article  CAS  Google Scholar 

  34. Naue JA, Toma SH, Bonacin JA, Araki K, Toma HE (2009) Probing the binding of tetraplatinum(pyridyl)porphyrin complexes to DNA by means of surface plasmon resonance. J Inorg Biochem 103(2):182–189

    Article  CAS  Google Scholar 

  35. Marek D, Narra M, Schneider A, Swavey S (2006) Synthesis, characterization and electrode adsorption studies of porphyrins coordinated to ruthenium(II) polypyridyl complexes. Inorg Chim Acta 359(3):789–799

    Google Scholar 

  36. Vinyard DJ, Swavey S, Richter MM (2007) Photoluminescence and electrogenerated chemiluminescence of a bis(bipyridyl)ruthenium(II)–porphyrin complex. Inorg Chim Acta 360(5):1529–1534

    Google Scholar 

  37. Narra M, Elliott P, Swavey S (2006) Synthesis, characterization and DNA interactions of 5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin coordinated to two [Ru(bipy)2Cl]+ groups. Inorg Chim Acta 359(7):2256–2262

    Google Scholar 

  38. Craver E, McCrate A, Nielsen M, Swavey S (2010) Tris-ruthenium(II)/copper(II) multimetallic porphyrin: synthesis, characterization, DNA binding and supercoiled DNA photocleavage studies.Inorg Chim Acta 363(2):453–456

    Google Scholar 

  39. García C, Ferraudi G, Lappin AG, Isaacs M (2012) Synthesis, spectral, electrochemical and flash photolysis studies of Fe(II), Ni(II) tetrapyridylporphyrins coordinated at the periphery with chromium(III) phenanthroline complexes. Inorg Chim Acta 386:73–82

    Google Scholar 

  40. Bucher C, Devillers CH, Moutet J-C, Royal G, Saint-Aman E (2009) Ferrocene-appended porphyrins: syntheses and properties. Coord Chem Rev 253(1–2):21–36

    Article  CAS  Google Scholar 

  41. Fukuzumi S, Okamoto K, Gros CP, Guilard R (2004) Mechanism of four-electron reduction of dioxygen to water by ferrocene derivatives in the presence of perchloric acid in benzonitrile, catalyzed by cofacial dicobalt porphyrins. J Am Chem Soc 126(33):10441–10449

    Article  CAS  Google Scholar 

  42. Mase K, Ohkubo K, Fukuzumi S (2013) Efficient two-electron reduction of dioxygen to hydrogen peroxide with one-electron reductants with a small overpotential catalyzed by a cobalt chlorin complex. J Am Chem Soc 135(7):2800–2808

    Article  CAS  Google Scholar 

  43. Samanta S, Mittra K, Sengupta K, Chatterjee S, Dey A (2013) Second sphere control of redox catalysis: selective reduction of O2 to O2 or H2O by an iron porphyrin catalyst. Inorg Chem 52(3):1443–1453

    Article  CAS  Google Scholar 

  44. Das D, Lee Y-M, Ohkubo K, Nam W, Karlin KD, Fukuzumi S (2013) Acid-induced mechanism change and overpotential decrease in dioxygen reduction catalysis with a dinuclear copper complex. J Am Chem Soc 135(10):4018–4026

    Article  CAS  Google Scholar 

  45. Das D, Lee Y-M, Ohkubo K, Nam W, Karlin KD, Fukuzumi S (2013) Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid. J Am Chem Soc 135(7):2825–2834

    Article  CAS  Google Scholar 

  46. Fukuzumi S, Kotani H, Lucas HR, Doi K, Suenobu T, Peterson RL, Karlin KD (2010) Mononuclear copper complex-catalyzed four-electron reduction of oxygen. J Am Chem Soc 132(20):6874–6875

    Article  CAS  Google Scholar 

  47. Sun B, Ou Z, Meng D, Fang Y, Song Y, Zhu W, Solntsev PV, Nemykin VN, Kadish KM (2014) Electrochemistry and catalytic properties for dioxygen reduction using ferrocene-substituted cobalt porphyrins. Inorg Chem 53(16):8600–8609

    Article  CAS  Google Scholar 

  48. Dammer SJ, Solntsev PV, Sabin JR, Nemykin VN (2013) Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts. Inorg Chem 52(16):9496–9510

    Article  CAS  Google Scholar 

  49. Vecchi A, Erickson NR, Sabin JR, Floris B, Conte V, Venanzi M, Galloni P, Nemykin VN (2015) Electronic properties of mono-substituted tetraferrocenyl porphyrins in solution and on a gold surface: assessment of the influencing factors for photoelectrochemical applications. Chem Eur J 21(1):269–279

    Article  CAS  Google Scholar 

  50. Nemykin VN, Rohde GT, Barrett CD, Hadt RG, Bizzarri C, Galloni P, Floris B, Nowik I, Herber RH, Marrani AG, Zanoni R, Loim NM (2009) Electron-transfer processes in metal-free tetraferrocenylporphyrin. Understanding internal interactions to access mixed-valence states potentially useful for quantum cellular automata. J Am Chem Soc 131(41):14969–14978

    Article  CAS  Google Scholar 

  51. Solntsev PV, Neisen BD, Sabin JR, Gerasimchuk NN, Nemykin VN (2011) Synthesis, characterization, X-ray structure, and mixed-valence states of trans -dichlorotin(IV)-5,10,15,20-tetraferrocenylporphyrin. J Porphyrins Phthalocyanines 15:612–621

    Article  CAS  Google Scholar 

  52. Kalita D, Morisue M, Kobuke Y (2006) Synthesis and electrochemical properties of slipped-cofacial porphyrin dimers of ferrocene-functionalized Zn-imidazolyl-porphyrins as potential terminal electron donors in photosynthetic models. New J Chem 30(1):77–92

    Article  CAS  Google Scholar 

  53. Formiga ALB, Nogueira AF, Araki K, Toma HE (2008) Contrasting photoelectrochemical behaviour of two isomeric supramolecular dyes based on meso-tetra(pyridyl)porphyrin incorporating four ([small mu ]3-oxo)-triruthenium(iii) clusters. New J Chem 32(7):1167–1174

    Google Scholar 

  54. Henderson J, Kubiak CP (2014) Photoinduced mixed valency in zinc porphyrin dimer of triruthenium cluster dyads. Inorg Chem 53(20):11298–11306

    Article  CAS  Google Scholar 

  55. Lo P-C, Leng X, Ng DKP (2007) Hetero-arrays of porphyrins and phthalocyanines. Coord Chem Rev 251(17–20):2334–2353

    Article  CAS  Google Scholar 

  56. Gatti T, Cavigli P, Zangrando E, Iengo E, Chiorboli C, Indelli MT (2013) Improving the efficiency of the photoinduced charge-separation process in a rhenium(I)–zinc porphyrin dyad by simple chemical functionalization. Inorg Chem 52(6):3190–3197

    Article  CAS  Google Scholar 

  57. Gabrielsson A, Lindsay Smith JR, Perutz RN (2008) Remote site photosubstitution in metalloporphyrin-rhenium tricarbonylbipyridine assemblies: photo-reactions of molecules with very short lived excited states. Dalton Trans 32:4259–4269

    Article  CAS  Google Scholar 

  58. Lachaud F, Jeandon C, Monari A, Assfeld X, Beley M, Ruppert R, Gros PC (2012) New dyads using (metallo)porphyrins as ancillary ligands in polypyridine ruthenium complexes. Synthesis and electronic properties. Dalton Trans 41(41):12865–12871

    Article  CAS  Google Scholar 

  59. Murai M, Sugimoto M, Akita M (2013) Zinc-porphyrins functionalized with redox-active metal peripherals: enhancement of d[small pi]-p[small pi] interaction leading to unique assembly and redox-triggered remote switching of fluorescence. Dalton Trans 42(45):16108–16120

    Article  CAS  Google Scholar 

  60. Cuesta L, Karnas E, Lynch VM, Sessler JL, Kajonkijya W, Zhu W, Zhang M, Ou Z, Kadish KM, Ohkubo K, Fukuzumi S (2008) (Pentamethylcyclopentadienyl)ruthenium π-complexes of metalloporphyrins: platforms with novel photo- and electrochemical properties. Chem Eur J 14(33):10206–10210

    Article  CAS  Google Scholar 

  61. Yasu Y, Inagaki A, Akita M (2014) Synthesis of trinuclear Pd–Ru–Pd porphyrin complexes with axially ligated Pd centers. Prominent metal-to-ligand charge transfer band in the visible region. J Organomet Chem 753:48–54

    Article  CAS  Google Scholar 

  62. Kojima T, Hanabusa K, Ohkubo K, Shiro M, Fukuzumi S (2010) Construction of SnIV porphyrin/trinuclear ruthenium cluster dyads linked by pyridine carboxylates: photoinduced electron transfer in the Marcus inverted region. Chem Eur J 16(12):3646–3655

    Article  CAS  Google Scholar 

  63. Li P, Amirjalayer S, Hartl F, Lutz M, Bruin Bd, Becker R, Woutersen S, Reek JNH (2014) Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy. Inorg Chem 53(10):5373–5383

    Google Scholar 

  64. Song L-C, Tang M-Y, Mei S-Z, Huang J-H, Hu Q-M (2007) The active site model for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer. Organometallics 26(7):1575–1577

    Article  CAS  Google Scholar 

  65. Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation. J Phys Chem B 112(27):8198–8202

    Article  CAS  Google Scholar 

  66. Kluwer AM, Kapre R, Hartl F, Lutz M, Spek AL, Brouwer AM, van Leeuwen PWNM, Reek JNH (2009) Self-assembled biomimetic [2Fe2S]-hydrogenasebased photocatalyst for molecular hydrogen evolution. Proc Natl Acad Sci USA 106:10460–10465

    Article  CAS  Google Scholar 

  67. Poddutoori P, Co DT, Samuel APS, Kim CH, Vagnini MT, Wasielewski MR (2011) Photoinitiated multistep charge separation in ferrocene-zinc porphyrin-diiron hydrogenase model complex triads. Energ Environ Sci 4(7):2441–2450

    Article  CAS  Google Scholar 

  68. Gao W-Y, Chrzanowski M, Ma S (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43(16):5841–5866

    Article  CAS  Google Scholar 

  69. Uvarova MA, Sinelshchikova AA, Golubnichaya MA, Nefedov SE, Enakieva YY, Gorbunova YG, Tsivadze AY, Stern C, Bessmertnykh-Lemeune A, Guilard R (2014) Supramolecular assembly of organophosphonate diesters using paddle-wheel complexes: first examples in porphyrin series. Cryst Growth Des 14(11):5976–5984

    Article  CAS  Google Scholar 

  70. Milic TN, Chi N, Yablon DG, Flynn GW, Batteas JD, Drain CM (2002) Controlled hierarchical self-assembly and deposition of nanoscale photonic materials. Angew Chem Int Ed 41(12):2117–2119

    Article  CAS  Google Scholar 

  71. Xiang Z, Xue Y, Cao D, Huang L, Chen J-F, Dai L (2014) Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew Chem Int Ed 53(9):2433–2437

    Article  CAS  Google Scholar 

  72. Wang Y, Deng K, Gui L, Tang Y, Zhou J, Cai L, Qiu J, Ren D, Wang Y (1999) Preparation and characterization of nanoscopic organic semiconductor of oxovanadium phthalocyanine. J Colloid Interface Sci 213(1):270–272

    Article  CAS  Google Scholar 

  73. Alves E, Iglesias BA, Deda DK, Budu A, Matias TA, Bueno VB, Maluf FV, Guido RVC, Oliva G, Catalani LH, Araki K, Garcia CRS (2015) Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum. Nanomed Nanotechnol 11:351–358

    Google Scholar 

  74. Deda DK, Budu A, Cruz LN, Araki K, Garcia CRS (2015) Strategies for development of antimalarials based on encapsulated porphyrin derivatives. Mini-Rev Med Chem 141055–1071

    Google Scholar 

  75. Deda DK, Pavani C, Carita E, Baptista MS, Toma HE, Araki K (2012) Correlation of photodynamic activity and singlet oxygen quantum yields in two series of hydrophobic monocationic porphyrins. J Porphyrins Phthalocyanines 16(1):55–63

    Article  CAS  Google Scholar 

  76. Deda DK, Pavani C, Carita E, Baptista MS, Toma HE, Araki K (2013) Control of cytolocalization and mechanism of cell death by encapsulation of a photosensitizer. J Biomed Nanotechnol 9(8):1307–1317

    Article  CAS  Google Scholar 

  77. Deda DK, Uchoa AF, Carita E, Baptista MS, Toma HE, Araki K (2009) A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int J Pharm 376(1–2):76–83

    Article  CAS  Google Scholar 

  78. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175

    Article  Google Scholar 

  79. Newkome GR, Moorefield CN, Vögtle F (2008) Dendritic molecules: concepts, syntheses, perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  80. Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99(7):1665–1688

    Article  CAS  Google Scholar 

  81. Grayson SM, Fréchet JMJ (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101(12):3819–3868

    Article  CAS  Google Scholar 

  82. Gorman CB, Smith JC (2001) Structure-property relationships in dendritic encapsulation. Acc Chem Res 34(1):60–71

    Article  CAS  Google Scholar 

  83. Majoral J-P, Caminade A-M (1999) Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev 99(3):845–880

    Article  CAS  Google Scholar 

  84. Newkome GR, He E, Moorefield CN (1999) Suprasupermolecules with novel properties: metallodendrimers. Chem Rev 99(7):1689–1746

    Article  CAS  Google Scholar 

  85. Deraedt C, Astruc D (2014) “Homeopathic” palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. Acc Chem Res 47(2):494–503

    Article  CAS  Google Scholar 

  86. He Y-M, Feng Y, Fan Q-H (2014) Asymmetric hydrogenation in the core of dendrimers. Acc Chem Res 47(10):2894–2906

    Article  CAS  Google Scholar 

  87. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Int Med 276(6):579–617

    Article  CAS  Google Scholar 

  88. Pikkemaat JA, Wegh RT, Lamerichs R, van de Molengraaf RA, Langereis S, Burdinski D, Raymond AYF, Janssen HM, de Waal BFM, Willard NP, Meijer EW, Grüll H (2007) Dendritic PARACEST contrast agents for magnetic resonance imaging. Contrast Media Mol I 2(5):229–239

    Article  CAS  Google Scholar 

  89. Unciti-Broceta A, Díaz-Mochón JJ, Sánchez-Martín RM, Bradley M (2012) The use of solid supports to generate nucleic acid carriers. Acc Chem Res 45(7):1140–1152

    Article  CAS  Google Scholar 

  90. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055

    Article  CAS  Google Scholar 

  91. Zhang X, Zeng Y, Yu T, Chen J, Yang G, Li Y (2014) Advances in photofunctional dendrimers for solar energy conversion. J Phys Chem Lett 5(13):2340–2350

    Google Scholar 

  92. Flores-Rojas GG, Lijanova IV, Morales-Saavedra OG, Sanchez-Montes K, Martínez-García M (2013) Synthesis and NLO behavior of Oligo(phenylenevinylene)-Porphyrin Dendrimers. Dyes Pigm 96(1):125–129

    Article  CAS  Google Scholar 

  93. Samoc M, Corkery TC, McDonagh AM, Cifuentes MP, Humphrey MG (2011) Organometallic complexes for non-linear optics. 49. Third-order non-linear optical spectral dependence studies of arylalkynylruthenium dendrimers. Aust J Chem 64(9):1269–1273

    Google Scholar 

  94. Tang M-C, Chan CK-M, Tsang DP-K, Wong Y-C, Chan MM-Y, Wong KM-C, Yam VW-W (2014) Saturated red-light-emitting gold(III) triphenylamine dendrimers for solution-processable organic light-emitting devices. Chem Eur J 20(46):15233–15241

    Article  CAS  Google Scholar 

  95. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854

    Article  CAS  Google Scholar 

  96. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39(5):1366–1377

    Article  CAS  Google Scholar 

  97. Tailor R, Abboud M, Sayari A (2014) Supported polytertiary amines: highly efficient and selective SO2 adsorbents. Environ Sci Technol 48(3):2025–2034

    Article  CAS  Google Scholar 

  98. Li W-S, Aida T (2009) Dendrimer porphyrins and phthalocyanines. Chem Rev 109(11):6047–6076

    Article  CAS  Google Scholar 

  99. Jin R-H, Aida T, Inoue S (1993) ‘Caged’ porphyrin: the first dendritic molecule having a core photochemical functionality. J Chem Soc Chem Commun (16):1260–1262

    Google Scholar 

  100. Jiang D-L, Aida T (1996) A dendritic iron porphyrin as a novel haemoprotein mimic: effects of the dendrimer cage on dioxygen-binding activity. Chem Commun (13):1523–1524

    Google Scholar 

  101. Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) Dendrimer-metalloporphyrins: synthesis and catalysis. J Am Chem Soc 118(24):5708–5711

    Article  CAS  Google Scholar 

  102. Jiang D-L, Aida T (1998) Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: cooperation of dendron subunits for singlet energy transduction. J Am Chem Soc 120(42):10895–10901

    Article  CAS  Google Scholar 

  103. Zingg A, Felber B, Gramlich V, Fu L, Collman JP, Diederich F (2002) Dendritic iron(II) porphyrins as models for hemoglobin and myoglobin: specific stabilization of O2 complexes in dendrimers with H-bond-donor centers. Helv Chim Acta 85(1):333–351

    Article  CAS  Google Scholar 

  104. Karasugi K, Kitagishi H, Kano K (2012) Modification of a dioxygen carrier, hemoCD, with PEGylated dendrons for extension of circulation time in the bloodstream. Bioconjug Chem 23(12):2365–2376

    Article  CAS  Google Scholar 

  105. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic, Netherlands

    Google Scholar 

  106. Choi M-S, Aida T, Yamazaki T, Yamazaki I (2001) A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: molecular design of an efficient energy funnel for visible photons. Angew Chem Int Ed 40(17):3194–3198

    Google Scholar 

  107. Paulo PMR, Costa SMB (2003) Non-covalent dendrimer-porphyrin interactions: the intermediacy of H-aggregates? Photochem Photobiol Sci 2(5):597–604

    Google Scholar 

  108. Paulo PMR, Costa SMB (2005) Interactions in noncovalent PAMAM/TMPyP systems studied by fluorescence spectroscopy. J Phys Chem B 109(29):13928–13940

    Article  CAS  Google Scholar 

  109. Paulo PMR, Gronheid R, De Schryver FC, Costa SMB (2003) Porphyrin-dendrimer assemblies studied by electronic absorption spectra and time-resolved fluorescence. Macromolecules 36(24):9135–9144

    Article  CAS  Google Scholar 

  110. Bo Z, Zhang L, Wang Z, Zhang X, Shen J (1999) Investigation of self-assembled dendrimer complexes. Mater Sci Eng, C 10(1–2):165–170

    Article  Google Scholar 

  111. Brewis M, Clarkson GJ, Goddard V, Helliwell M, Holder AM, McKeown NB (1998) Silicon phthalocyanines with axial dendritic substituents. Angew Chem Int Ed 37(8):1092–1094

    Article  CAS  Google Scholar 

  112. McKeown NB (1999) Phthalocyanine-containing dendrimers. Adv Mater 11(1):67–69

    Article  CAS  Google Scholar 

  113. Sakamoto M, Ueno A, Mihara H (2000) Construction of [small alpha]-helical peptide dendrimers conjugated with multi-metalloporphyrins: photoinduced electron transfer on dendrimer architecture. Chem Commun (18):1741–1742

    Google Scholar 

  114. Sakamoto M, Ueno A, Mihara H (2001) Multipeptide-metalloporphyrin assembly on a dendrimer template and photoinduced electron transfer based on the dendrimer structure. Chem Eur J 7(11):2449–2458

    Article  CAS  Google Scholar 

  115. Astruc D (2012) Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat Chem 4(4):255–267

    Article  CAS  Google Scholar 

  116. Ceroni P, Venturi M (2011) Photoactive and electroactive dendrimers: future trends and applications. Aust J Chem 64(2):131–146

    Article  CAS  Google Scholar 

  117. Dandliker PJ, Diederich F, Gross M, Knobler CB, Louati A, Sanford EM (1994) Dendritic porphyrins: modulating redox potentials of electroactive chromophores with pendant multifunctionality. Angew Chem Int Ed 33(17):1739–1742

    Google Scholar 

  118. Dandliker PJ, Diederich F, Gisselbrecht J-P, Louati A, Gross M (1996) Water-soluble dendritic iron porphyrins: synthetic models of globular heme proteins. Angew Chem Int Ed 34(23–24):2725–2728

    Google Scholar 

  119. Kassner RJ (1973) Theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. J Am Chem Soc 95(8):2674–2677

    Article  CAS  Google Scholar 

  120. Weyermann P, Diederich F, Gisselbrecht J-P, Boudon C, Gross M (2002) Dendritic iron porphyrins with tethered axial ligands: new model compounds for cytochromes. Helv Chim Acta 85(2):571–598

    Article  CAS  Google Scholar 

  121. Weyermann P, Gisselbrecht J-P, Boudon C, Diederich F, Gross M (1999) Dendritic iron porphyrins with tethered axial ligands: new model compounds for cytochromes. Angew Chem Int Ed 38(21):3215–3219

    Article  CAS  Google Scholar 

  122. Cameron CS, Gorman CB (2002) Effects of site encapsulation on electrochemical behavior of redox-active core dendrimers. Adv Funct Mater 12(1):17–20

    Article  CAS  Google Scholar 

  123. Gorman CB, Smith JC, Hager MW, Parkhurst BL, Sierzputowska-Gracz H, Haney CA (1999) Molecular structure-property relationships for electron-transfer rate attenuation in redox-active core dendrimers. J Am Chem Soc 121(43):9958–9966

    Article  CAS  Google Scholar 

  124. Pollak KW, Leon JW, Fréchet JMJ, Maskus M, Abruña HD (1998) Effects of dendrimer generation on site isolation of core moieties: electrochemical and fluorescence quenching studies with metalloporphyrin core dendrimers. Chem Mater 10(1):30–38

    Article  CAS  Google Scholar 

  125. Vögtle F, Plevoets M, Nieger M, Azzellini GC, Credi A, De Cola L, De Marchis V, Venturi M, Balzani V (1999) Dendrimers with a photoactive and redox-active [Ru(bpy)3]2+-type core: photophysical properties, electrochemical behavior, and excited-state electron-transfer reactions. J Am Chem Soc 121(26):6290–6298

    Article  Google Scholar 

  126. Nierengarten J-F (2003) Dendritic encapsulation of active core molecules. CR Chim 6(8–10):725–733

    Article  CAS  Google Scholar 

  127. Pani RC, Yingling YG (2012) Role of solvent and dendritic architecture on the redox core encapsulation. J Phys Chem A 116(28):7593–7599

    Article  CAS  Google Scholar 

  128. Hogan CF, Harris AR, Bond AM, Sly J, Crossley MJ (2006) Electrochemical studies of porphyrin-appended dendrimers. Phys Chem Chem Phys 8(17):2058–2065

    Article  CAS  Google Scholar 

  129. Archut A, Azzellini GC, Balzani V, De Cola L, Vögtle F (1998) Toward photoswitchable dendritic hosts. Interaction between azobenzene-functionalized dendrimers and eosin. J Am Chem Soc 120(47):12187–12191

    Article  CAS  Google Scholar 

  130. Imaoka T, Tanaka R, Yamamoto K (2006) Synergetic activation of carbon dioxide molecule using phenylazomethine dendrimers as a catalyst. J Polym Sci A Polym Chem 44(17):5229–5236

    Google Scholar 

  131. Huang C-Y, Su YO (2010) Spectral and redox properties of zinc porphyrin core dendrimers with triarylamines as dendron. Dalton Trans 39(35):8306–8312

    Article  CAS  Google Scholar 

  132. Loiseau F, Campagna S, Hameurlaine A, Dehaen W (2005) Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior. J Am Chem Soc 127(32):11352–11363

    Article  CAS  Google Scholar 

  133. Huang C-Y, Hsu C-Y, Yang L-Y, Lee C-J, Yang T-F, Hsu C-C, Ke C-H, Su YO (2012) A Systematic study of electrochemical and spectral properties for the electronic interactions in porphyrin-triphenylamine conjugates. Eur J Inorg Chem 7:1038–1047

    Article  CAS  Google Scholar 

  134. Le Pleux L, Pellegrin Y, Blart E, Odobel F, Harriman A (2011) Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry. J Phys Chem A 115(20):5069–5080

    Article  CAS  Google Scholar 

  135. Fukuzumi S, Saito K, Ohkubo K, Khoury T, Kashiwagi Y, Absalom MA, Gadde S, D’Souza F, Araki Y, Ito O, Crossley MJ (2011) Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chem Commun 47(28):7980–7982

    Google Scholar 

  136. Costa SMB, Andrade SM, Togashi DM, Paulo PMR, Laia CAT, Isabel Viseu M, Gonçalves da Silva AM (2009) Optical spectroscopy and photochemistry of porphyrins and phthalocyanines. J Porphyrins Phthalocyanines 13:509–517

    Article  CAS  Google Scholar 

  137. Paulo PMR, Lopes JNC, Costa SMB (2007) Molecular dynamics simulations of charged dendrimers: low-to-intermediate half-generation PAMAMs. J Phys Chem B 111(36):10651–10664

    Article  CAS  Google Scholar 

  138. Paulo PMR, Lopes JNC, Costa SMB (2008) Molecular dynamics simulations of porphyrin-dendrimer systems: toward modeling electron transfer in solution. J Phys Chem B 112(47):14779–14792

    Article  CAS  Google Scholar 

  139. Paulo PMR, Costa SMB (2012) Photoinduced electron-transfer in supramolecular complex of zinc porphyrin with poly(amido amine) dendrimer donor. J Photochem Photobiol A 234:66–74

    Google Scholar 

  140. Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K (2011) Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat Mater 10(6):450–455

    Article  CAS  Google Scholar 

  141. Imaoka T, Ueda H, Yamamoto K (2012) Enhancing the photoelectric effect with a potential-programmed molecular rectifier. J Am Chem Soc 134(20):8412–8415

    Article  CAS  Google Scholar 

  142. Giraudeau A, Ruhlmann L, El Kahef L, Gross M (1996) Electrosynthesis and characterization of symmetrical and unsymmetrical linear porphyrin dimers and their precursor monomers. J Am Chem Soc 118(12):2969–2979

    Article  CAS  Google Scholar 

  143. Ruhlmann L, Schulz A, Giraudeau A, Messerschmidt C, Fuhrhop J-H (1999) A polycationic zinc-5,15-dichlorooctaethylporphyrinate-viologen wire. J Am Chem Soc 121(28):6664–6667

    Article  CAS  Google Scholar 

  144. Hao J, Giraudeau A, Ping Z, Ruhlmann L (2008) Supramolecular assemblies obtained by large counteranion incorporation in a well-oriented polycationic copolymer. Langmuir 24(5):1600–1603

    Article  CAS  Google Scholar 

  145. Schaming D, Ahmed I, Hao J, Alain-Rizzo V, Farha R, Goldmann M, Xu H, Giraudeau A, Audebert P, Ruhlmann L (2011) Easy methods for the electropolymerization of porphyrins based on the oxidation of the macrocycles. Electrochim Acta 56(28):10454–10463

    Article  CAS  Google Scholar 

  146. Schaming D, Marggi-Poullain S, Ahmed I, Farha R, Goldmann M, Gisselbrecht J-P, Ruhlmann L (2011) Electrosynthesis and electrochemical properties of porphyrin dimers with pyridinium as bridging spacer. New J Chem 35(11):2534–2543

    Google Scholar 

  147. Ruhlmann L, Hao J, Ping Z, Giraudeau A (2008) Self-oriented polycationic copolymers obtained from bipyridinium meso-substituted-octaethylporphyrins. J Electroanal Chem 621(1):22–30

    Article  CAS  Google Scholar 

  148. Xia Y, Schaming D, Farha R, Goldmann M, Ruhlmann L (2012) Bis-porphyrin copolymers covalently linked by pyridinium spacers obtained by electropolymerization from [small beta]-octaethylporphyrins and pyridyl-substituted porphyrins. New J Chem 36(3):588–596

    Google Scholar 

  149. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98(1):219–238

    Article  CAS  Google Scholar 

  150. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98(1):307–326

    Article  CAS  Google Scholar 

  151. Allain C, Favette S, Chamoreau L-M, Vaissermann J, Ruhlmann L, Hasenknopf B (2008) Hybrid organic–inorganic porphyrin–polyoxometalate complexes. Eur J Inorg Chem 22:3433–3441

    Article  CAS  Google Scholar 

  152. Allain C, Schaming D, Karakostas N, Erard M, Gisselbrecht J-P, Sorgues S, Lampre I, Ruhlmann L, Hasenknopf B (2013) Synthesis, electrochemical and photophysical properties of covalently linked porphyrin-polyoxometalates. Dalton Trans 42(8):2745–2754

    Article  CAS  Google Scholar 

  153. Azcarate I, Ahmed I, Farha R, Goldmann M, Wang X, Xu H, Hasenknopf B, Lacote E, Ruhlmann L (2013) Synthesis and characterization of conjugated Dawson-type polyoxometalate-porphyrin copolymers. Dalton Trans 42(35):12688–12698

    Article  CAS  Google Scholar 

  154. Schaming D, Allain C, Farha R, Goldmann M, Lobstein S, Giraudeau A, Hasenknopf B, Ruhlmann L (2010) Synthesis and photocatalytic properties of mixed polyoxometalate-porphyrin copolymers obtained from anderson-type polyoxomolybdates. Langmuir 26(7):5101–5109

    Article  CAS  Google Scholar 

  155. Schaming D, Costa-Coquelard C, Sorgues S, Ruhlmann L, Lampre I (2010) Photocatalytic reduction of Ag2SO4 by electrostatic complexes formed by tetracationic zinc porphyrins and tetracobalt Dawson-derived sandwich polyanion. Appl Catal A 373(1–2):160–167

    Article  CAS  Google Scholar 

  156. Schaming D, Farha R, Xu H, Goldmann M, Ruhlmann L (2010) Formation and photocatalytic properties of nanocomposite films containing both tetracobalt Dawson-derived sandwich polyanions and tetracationic porphyrins. Langmuir 27(1):132–143

    Article  CAS  Google Scholar 

  157. Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) A molecular photovoltaic system based on Dawson type polyoxometalate and porphyrin formed by layer-by-layer self assembly. Chem Commun 49(5):496–498

    Google Scholar 

  158. Muthukumar P, Abraham John S (2014) Gold nanoparticles decorated on cobalt porphyrin-modified glassy carbon electrode for the sensitive determination of nitrite ion. J Colloid Interface Sci 421:78–84

    Google Scholar 

  159. Li J, Tu W, Lei J, Tang S, Ju H (2011) Porphyrin-functionalized gold nanoparticles for selective electrochemical detection of peroxyacetic acid. Electrochim Acta 56(9):3159–3163

    Article  CAS  Google Scholar 

  160. Shen Y, Zhan F, Lu J, Zhang B, Huang D, Xu X, Zhang Y, Wang M (2013) Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films 545:327–331

    Article  CAS  Google Scholar 

  161. Lu X, Zhi F, Shang H, Wang X, Xue Z (2010) Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode. Electrochim Acta 55(11):3634–3642

    Article  CAS  Google Scholar 

  162. Tombe S, Antunes E, Nyokong T (2013) Electrospun fibers functionalized with phthalocyanine-gold nanoparticle conjugates for photocatalytic applications. J Mol Catal A 371:125–134

    Article  CAS  Google Scholar 

  163. Tombe S, Chidawanyika W, Antunes E, Priniotakis G, Westbroek P, Nyokong T (2012) Physicochemical behavior of zinc tetrakis (benzylmercapto) phthalocyanine when used to functionalize gold nanoparticles and in electronspun fibers. J Photochem Photobiol A 240:50–58

    Google Scholar 

  164. Noda Y, Noro S-I, Akutagawa T, Nakamura T (2014) Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions. Nature 4:3758

    Google Scholar 

  165. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiolderivatized gold nanoparticles in a 2-phase liquid system. J Chem Soc Chem Commun 801–802

    Google Scholar 

  166. Ahmed MS, Jeong H, You J-M, Jeon S (2011) Electrocatalytic reduction of dioxygen at a modified glassy carbon electrode based on Nafion®-dispersed single-walled carbon nanotubes and cobalt–porphyrin with palladium nanoparticles in acidic media. Electrochim Acta 56(13):4924–4929

    Article  CAS  Google Scholar 

  167. Chen S, Yuan R, Chai Y, Zhang L, Wang N, Li X (2007) Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens Bioelectron 22(7):1268–1274

    Article  CAS  Google Scholar 

  168. Dong S, Li N, Zhang P, Li Y, Chen Z, Huang T (2012) Fabrication of hemoglobin/ionic liquid modified carbon paste electrode based on the electrodeposition of gold nanoparticles/CdS quantum dots and its electrochemical application. Electroanal 24(7):1554–1560

    Article  CAS  Google Scholar 

  169. Qiu J-D, Peng H-P, Liang R-P, Xia X-H (2010) Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens Bioelectron 25(6):1447–1453

    Article  CAS  Google Scholar 

  170. Wang W, Zhang T-J, Zhang D-W, Li H-Y, Ma Y-R, Qi L-M, Zhou Y-L, Zhang X-X (2011) Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta 84(1):71–77

    Article  CAS  Google Scholar 

  171. Wei N, Xin X, Du J, Li J (2011) A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron 26(8):3602–3607

    Article  CAS  Google Scholar 

  172. Xuan J, Jia X-D, Jiang L-P, Abdel-Halim ES, Zhu J-J (2012) Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin. Bioelectrochemistry 84:32–37

    Article  CAS  Google Scholar 

  173. Li Y, Yang W, Bai Y, Sun C (2006) Amperometric sensor for trichloroacetic acid based on myoglobin/colloidal gold nanoparticles immobilized in titania sol-gel matrix. Electroanal 18(5):499–506

    Article  CAS  Google Scholar 

  174. Sun W, Qin P, Zhao R, Jiao K (2010) Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta 80(5):2177–2181

    Article  CAS  Google Scholar 

  175. Jiang J, Fan W, Du X (2014) Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens Bioelectron 51:343–348

    Article  CAS  Google Scholar 

  176. Li J, Lei J, Wang Q, Wang P, Ju H (2012) Bionic catalysis of porphyrin for electrochemical detection of nucleic acids. Electrochim Acta 83:73–77

    Article  CAS  Google Scholar 

  177. Condomitti U, Silveira AT, Condomitti GW, Toma SH, Araki K, Toma HE (2014) Silver recovery using electrochemically active magnetite coated carbon particles. Hydrometallurgy 147–148:241–245

    Article  CAS  Google Scholar 

  178. Condomitti U, Zuin A, Novak MA, Araki K, Toma HE (2011) Magnetic coupled electrochemistry: exploring the use of superparamagnetic nanoparticles for capturing, transporting and concentrating trace amounts of analytes. Electrochem Commun 13(1):72–74

    Article  CAS  Google Scholar 

  179. Condomitti U, Zuin A, Silveira AT, Araki K, Toma HE (2011) Direct use of superparamagnetic nanoparticles as electrode modifiers for the analysis of mercury ions from aqueous solution and crude petroleum samples. J Electroanal Chem 661(1):72–76

    Article  CAS  Google Scholar 

  180. Condomitti U, Zuin A, Silveira AT, Araki K, Toma HE (2012) Magnetic nanohydrometallurgy: a promising nanotechnological approach for metal production and recovery using functionalized superparamagnetic nanoparticles. Hydrometallurgy 125–126:148–151

    Article  CAS  Google Scholar 

  181. Condomitti U, Zuin A, Silveira AT, Toma SH, Araki K, Toma HE (2011) Superparamagnetic carbon electrodes: a versatile approach for performing magnetic coupled electrochemical analysis of mercury ions. Electroanal 23(11):2569–2573

    Article  CAS  Google Scholar 

  182. Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50(3):675–683

    Article  CAS  Google Scholar 

  183. Deng K, Zhou J, Li X (2013) Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid. Electrochim Acta 114:341–346

    Article  CAS  Google Scholar 

  184. Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S (2014) Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc 136(17):6348–6354

    Article  CAS  Google Scholar 

  185. Tu W, Lei J, Jian G, Hu Z, Ju H (2010) Noncovalent assembly of picket-fence porphyrins on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing. Chem Eur J 16(13):4120–4126

    Article  CAS  Google Scholar 

  186. Wang C, Yuan R, Chai Y, Chen S, Zhang Y, Hu F, Zhang M (2012) Non-covalent iron(III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Electrochim Acta 62:109–115

    Article  CAS  Google Scholar 

  187. Hu YQ, Xue ZH, He HX, Ai RX, Liu XH, Lu XQ (2013) Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosens Bioelectron 47:45–49

    Article  CAS  Google Scholar 

  188. Wang R-X, Fan J-J, Fan Y-J, Zhong J-P, Wang L, Sun S-G, Shen X-C (2014) Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale 6:14999–15007

    Article  CAS  Google Scholar 

  189. Jahan M, Bao QL, Loh KP (2012) Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713

    Article  CAS  Google Scholar 

  190. Tang HJ, Yin HJ, Wang JY, Yang NL, Wang D, Tang ZY (2013) Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew Chem Int Edit 52(21):5585–5589

    Article  CAS  Google Scholar 

  191. Hijazi I, Jousselme B, Jegou P, Filoramo A, Campidelli S (2012) Formation of linear and hyperbranched porphyrin polymers on carbon nanotubes via a CuAAC “grafting from” approach. J Mater Chem 22(39):20936–20942

    Article  CAS  Google Scholar 

  192. Le Ho KH, Rivier L, Jousselme B, Jegou P, Filoramo A, Campidelli S (2010) Zn-porphyrin/Zn-phthalocyanine dendron for SWNT functionalisation. Chem Commun 46(46):8731–8733

    Google Scholar 

  193. Palacin T, Khanh HL, Jousselme B, Jegou P, Filoramo A, Ehli C, Guldi DM, Campidelli S (2009) Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc 131(42):15394–15402

    Article  CAS  Google Scholar 

  194. Han HS, Lee HK, You J-M, Jeong H, Jeon S (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sensors Actuat B 190:886–895

    Article  CAS  Google Scholar 

  195. Walter RI (1952) Potentiometric studies of a sulfonated iron porphyrin. J Biol Chem 196(1):151–174

    CAS  Google Scholar 

  196. Davis DG, Bynum LM (1975) A study of the electrode kinetics of iron porphyrins. Bioelectrochem Bioenerg 2(3):184–190

    Google Scholar 

  197. Wilson GS, Neri BP (1973) Cyclic voltmmetry of porphyrins and metalloporphyrins. Ann NY Acad Sci 206(1):568–578

    Article  CAS  Google Scholar 

  198. Lu X, Shan D, Yang J, Huang B, Zhou X (2013) Determination of m-dinitrobenzene based on novel type of sensor using thiol-porphyrin mixed monolayer-tethered polyaniline with intercalating fullerenols. Talanta 115:457–461

    Article  CAS  Google Scholar 

  199. Lv M, Mei T, Zhang Ca, Wang X (2014) Selective and sensitive electrochemical detection of dopamine based on water-soluble porphyrin functionalized graphene nanocomposites. RSC Adv 4(18):9261–9270

    Google Scholar 

  200. Poursaberi T, Hassanisadi M (2012) Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J Porphyrins Phthalocyanines 16(10):1140–1147

    Article  CAS  Google Scholar 

  201. Joseph R, Girish Kumar K (2010) Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test Anal 2(6):278–283

    Article  CAS  Google Scholar 

  202. Tu W, Lei J, Ju H (2009) Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J 15(3):779–784

    Article  CAS  Google Scholar 

  203. van Staden JF, Stefan-van Staden RI (2010) Application of porphyrins in flow-injection analysis: a review. Talanta 80(5):1598–1605

    Article  CAS  Google Scholar 

  204. Quintino MSM, Angnes L (2004) Batch injection analysis: an almost unexplored powerful tool. Electroanal 16(7):513–523

    Article  CAS  Google Scholar 

  205. do Nascimento RF, Selva TMG, Ribeiro WF, Belian MF, Angnes L, Nascimento VB (2013) Flow-injection electrochemical determination of citric acid using a cobalt(II)–phthalocyanine modified carbon paste electrode. Talanta 105:354–359

    Google Scholar 

  206. Kawamura K, Ikoma K, Igarashi S, Hisamoto H, Yao T (2011) Flow injection analysis combined with a hydrothermal flow reactor: Application to kinetic determination of trace amounts of iridium using a water-soluble porphyrin. Talanta 84(5):1318–1322

    Article  CAS  Google Scholar 

  207. Kawamura K, Nakai T, Ikoma K, Hisamoto H (2012) High-throughput Ru(III) analysis using the hydrothermal flow reactor-mediated FIA by the extreme acceleration of Ru(III) complexation with 1,10-phenanthroline. Talanta 99:415–419

    Article  CAS  Google Scholar 

  208. Quintino MSM, Araki K, Toma HE, Angnes L (2008) New hydrazine sensors based on electropolymerized meso-tetra(4-sulphonatephenyl)porphyrinate manganese(III)/silver nanomaterial. Talanta 74(4):730–735

    Article  CAS  Google Scholar 

  209. Araki K, Angnes L, Gutz I GR, Toma HE, Martins PR, Silva FL (2009) Flow injection analyzer for analysis of sulfide and nitrite for environmental monitoring, comprises reservoir for hydrogen, reservoir for standard solution, reservoir for reducing solution, and reservoir for carrier solution. BR Patent BR200905276-A2, Dec 2009

    Google Scholar 

  210. Beheshti SS, Sohbat F, Amini MK (2010) A manganese porphyrin-based sensor for flow-injection potentiometric determination of thiocyanate. J Porphyrins Phthalocyanines 14(02):158–165

    Article  CAS  Google Scholar 

  211. Almeida SAA, Montenegro MCBSM, Sales MGF (2013) New and low cost plastic membrane electrode with low detection limits for sulfadimethoxine determination in aquaculture waters. J Electroanal Chem 709:39–45

    Article  CAS  Google Scholar 

  212. Cuartero M, Amorim CG, Araújo AN, Ortuño JA, Montenegro MCBSM (2013) A SO2-selective electrode based on a Zn-porphyrin for wine analysis. Anal Chim Acta 787:57–63

    Article  CAS  Google Scholar 

  213. Poursaberi T, Ganjali MR, Hassanisadi M (2012) A novel fluoride-selective electrode based on metalloporphyrin grafted-grapheneoxide. Talanta 101:128–134

    Article  CAS  Google Scholar 

  214. Xiaodong S, Ying L, Fagen L, Yangqin L, Zhenghua S (2011) Subnanogram determination of aniracetam in pharmaceutical preparations and biofluids by flow injection analysis with chemiluminescence detection based on its enhancement of the myoglobin-luminol reaction. J AOAC Int 94(5):1461–1466

    Article  CAS  Google Scholar 

  215. Fan D, Li G, Hao J (2010) Fabrication and electrocatalytic activities of porphyrin and 12-molybdophosphoric acid hybrid films. J Colloid Interface Sci 351(1):151–155

    Article  CAS  Google Scholar 

  216. Ma J, Wu J, Zheng J, Liu L, Zhang D, Xu X, Yang X, Tong Z (2012) Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate. Microporous Mesoporous Mater 151:325–329

    Article  CAS  Google Scholar 

  217. Wang D, Groves JT (2013) Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc Natl Acad Sci USA 110(39):15579–15584

    Google Scholar 

  218. Ramírez G, Ferraudi G, Chen YY, Trollund E, Villagra D (2009) Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin). Inorg Chim Acta 362(1):5–10

    Article  CAS  Google Scholar 

  219. Yao SA, Ruther RE, Zhang L, Franking RA, Hamers RJ, Berry JF (2012) Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “Smart” electrodes. J Am Chem Soc 134(38):15632–15635

    Article  CAS  Google Scholar 

  220. Yan Y, Yao P, Mu Q, Wang L, Mu J, Li X, Kang S-Z (2011) Electrochemical behavior of amino-modified multi-walled carbon nanotubes coordinated with cobalt porphyrin for the oxidation of nitric oxide. Appl Surf Sci 258(1):58–63

    Article  CAS  Google Scholar 

  221. Ajayi FF, Chae K-J, Kim K-Y, Choi M-j, Kim IS (2009) Photocurrent and photoelectrochemical hydrogen production with tin porphyrin and platinum nanowires immobilized with nafion on glassy carbon electrode. Int J Hydrogen Energ 34(1):110–114

    Google Scholar 

  222. Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K (2013) Oxygen reduction on graphene-supported MN4 macrocycles in alkaline media. Electrochem Commun 33:18–22

    Article  CAS  Google Scholar 

  223. Alenezi K, Ibrahim SK, Li P, Pickett CJ (2013) Solar fuels: photoelectrosynthesis of CO from CO2 at p-type Si using Fe porphyrin electrocatalysts. Chem Eur J 19(40):13522–13527

    Article  CAS  Google Scholar 

  224. Wang W, Li X, Wang X, Shang H, Liu X, Lu X (2010) Comparative electrochemical behaviors of a series of SH-terminated-functionalized porphyrins assembled on a gold electrode by scanning electrochemical microscopy (SECM). J Phys Chem B 114(32):10436–10441

    Article  CAS  Google Scholar 

  225. Lu X, Yuan H, Zuo G, Yang J (2008) Study of the size and separation of pinholes in the self-assembled thiol-porphyrin monolayers on gold electrodes. Thin Solid Films 516(18):6476–6482

    Article  CAS  Google Scholar 

  226. Lu X, Li M, Yang C, Zhang L, Li Y, Jiang L, Li H, Jiang L, Liu C, Hu W (2006) Electron transport through a self-assembled monolayer of thiol-end-functionalized tetraphenylporphines and metal tetraphenylporphines. Langmuir 22(7):3035–3039

    Article  CAS  Google Scholar 

  227. Vecchi A, Gatto E, Floris B, Conte V, Venanzi M, Nemykin VN, Galloni P (2012) Tetraferrocenylporphyrins as active components of self-assembled monolayers on gold surface. Chem Commun 48(42):5145–5147

    Article  CAS  Google Scholar 

  228. Xue Z, Yang J, Zhi F, Wang W, Liu X, Lu X (2009) Preparation, characterization, and electrochemical behaviors of self-assembled monolayer on gold electrode surface with mercapto-derivatized cobaltous porphyrin. Anal Lett 42(4):668–677

    Article  CAS  Google Scholar 

  229. Jana A, Ishida M, Kwak K, Sung YM, Kim DS, Lynch VM, Lee D, Kim D, Sessler JL (2013) Comparative electrochemical and photophysical studies of tetrathiafulvalene-annulated porphyrins and their ZnII complexes: the effect of metalation and structural variation. Chem Eur J 19(1):338–349

    Article  CAS  Google Scholar 

  230. Nielsen KA, Levillain E, Lynch VM, Sessler JL, Jeppesen JO (2009) Tetrathiafulvalene porphyrins. Chem Eur J 15(2):506–516

    Article  CAS  Google Scholar 

  231. Jia H, Schmid B, Liu S-X, Jaggi M, Monbaron P, Bhosale SV, Rivadehi S, Langford SJ, Sanguinet L, Levillain E, El-Khouly ME, Morita Y, Fukuzumi S, Decurtins S (2012) Tetrathiafulvalene-fused porphyrins via quinoxaline linkers: symmetric and asymmetric donor-acceptor systems. ChemPhysChem 13(14):3370–3382

    Article  CAS  Google Scholar 

  232. Bill NL, Ishida M, Bähring S, Lim JM, Lee S, Davis CM, Lynch VM, Nielsen KA, Jeppesen JO, Ohkubo K, Fukuzumi S, Kim D, Sessler JL (2013) Porphyrins fused with strongly electron-donating 1,3-dithiol-2-ylidene moieties: redox control by metal cation complexation and anion binding. J Am Chem Soc 135(29):10852–10862

    Article  CAS  Google Scholar 

  233. Osati S, Davarani SSH, Safari N, Banitaba MH (2011) Electrochemical synthesis of novel π-extended phenoxazine derivatives of porphyrincatecholes. Electrochim Acta 56(25):9426–9432

    Article  CAS  Google Scholar 

  234. Sakurai T, Shi K, Sato H, Tashiro K, Osuka A, Saeki A, Seki S, Tagawa S, Sasaki S, Masunaga H, Osaka K, Takata M, Aida T (2008) Prominent electron transport property observed for triply fused metalloporphyrin dimer: directed columnar liquid crystalline assembly by amphiphilic molecular design. J Am Chem Soc 130(42):13812–13813

    Article  CAS  Google Scholar 

  235. Karakostas N, Schaming D, Sorgues S, Lobstein S, Gisselbrecht JP, Giraudeau A, Lampre I, Ruhlmann L (2010) Photophysical, electro- and spectroelectro-chemical properties of the nonplanar porphyrin [ZnOEP(Py) 4+4 ,4Cl] in aqueous media. J Photochem Photobiol A 213(1):52–60

    Article  CAS  Google Scholar 

  236. Engelmann FM, Losco P, Winnischofer H, Araki K, Toma HE (2002) Synthesis, electrochemistry, spectroscopy and photophysical properties of a series of meso-phenylpyridylporphyrins with one to four pyridyl rings coordinated to [Ru(bipy)2Cl]+ groups. J Porphyrins Phthalocyanines 6(1):33–42

    Article  CAS  Google Scholar 

  237. Kadish KM, E W, Zhan R, Khoury T, Govenlock LJ, Prashar JK, Sintic PJ, Ohkubo K, Fukuzumi S, Crossley MJ (2007) Porphyrin-diones and porphyrin-tetraones: reversible redox units being localized within the porphyrin macrocycle and their effect on tautomerism. J Am Chem Soc 129(20):6576–6588

    Google Scholar 

  238. Sun P, Zong H, Salaita K, Ketter JB, Barrett AGM, Hoffman BM, Mirkin CA (2006) Probing surface-porphyrazine reduction potentials by molecular design. J Phys Chem B 110(37):18151–18153

    Article  CAS  Google Scholar 

  239. Gross AJ, Bucher C, Coche-Guerente L, Labbé P, Downard AJ, Moutet J-C (2011) Nickel (II) tetraphenylporphyrin modified surfaces via electrografting of an aryldiazonium salt. Electrochem Commun 13(11):1236–1239

    Article  CAS  Google Scholar 

  240. Jiao J, Anariba F, Tiznado H, Schmidt I, Lindsey JS, Zaera F, Bocian DF (2006) Stepwise formation and characterization of covalently linked multiporphyrin-imide architectures on Si(100). J Am Chem Soc 128(21):6965–6974

    Article  CAS  Google Scholar 

  241. Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y (2008) The role of aromaticity and the π-conjugated framework in multiporphyrinic systems as single-molecule switches. Small 4(7):962–969

    Article  CAS  Google Scholar 

  242. Lin T, Kuang G, Shang XS, Liu PN, Lin N (2014) Self-assembly of metal-organic coordination networks using on-surface synthesized ligands. Chem Commun 50(97):15327–15329

    Article  CAS  Google Scholar 

  243. Garah ME, Ciesielski A, Marets N, Bulach V, Hosseini MW, Samori P (2014) Molecular tectonics based nanopatterning of interfaces with 2D metal-organic frameworks (MOFs). Chem Commun 50(82):12250–12253

    Article  CAS  Google Scholar 

  244. So MC, Beyzavi MH, Sawhney R, Shekhah O, Eddaoudi M, Al-Juaid SS, Hupp JT, Farha OK (2015) Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chem Commun 51(1):85–88

    Google Scholar 

  245. Ikeda K, Sato S, Takahashi K, Masuda T, Murakoshi K, Uosaki K (2013) Surface optimization of optical antennas for plasmonic enhancement of photoelectrochemical reactions. Electrochim Acta 112:864–868

    Article  CAS  Google Scholar 

  246. Deng S, Lei J, Huang Y, Cheng Y, Ju H (2013) Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Anal Chem 85(11):5390–5396

    Article  CAS  Google Scholar 

  247. Wu J-W, Mei W-J, Yan Z-H, Liu J-C, Li H (2013) In situ spectroelectrochemical monitoring during the electrocatalytic oxidation of guanine on [Ru(bpy)2(MPyTMPP)Cl]+/ITO electrode. J Electroanal Chem 697:21–27

    Article  CAS  Google Scholar 

  248. Lvova L, Galloni P, Floris B, Lundström I, Paolesse R, Natale C (2013) A ferrocene-porphyrin ligand for multi-transduction chemical sensor development. Sensors-Basel 13(5):5841–5856

    Article  CAS  Google Scholar 

  249. Lv Y-Y, Xu W, Lin F-W, Wu J, Xu Z-K (2013) Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT. Sens Actuators B 184:205–211

    Google Scholar 

  250. Arıcan D, Erdoğmuş A, Koca A (2014) Electrochromism of the Langmuir-Blodgett films based on monophthalocyanines carrying redox active metal centers. Thin Solid Films 550:669–676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koiti Araki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matias, T.A., Azzellini, G.C., Angnes, L., Araki, K. (2016). Supramolecular Hybrid Organic/Inorganic Nanomaterials Based on Metalloporphyrins and Phthalocyanines. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_1

Download citation

Publish with us

Policies and ethics