Skip to main content

Design of an In Situ Setup Combining Nanocalorimetry and Nano- or Micro-focus X-Ray Scattering to Address Fast Structure Formation Processes

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

In the present chapter, we describe an original experimental setup combining micro- or nano-focus X-ray scattering and chip calorimetry (nanocalorimetry), which is designed for simultaneous in situ measurements. Some technical aspects of the setup design regarding its adaptation to the sample environment specific to the nano- and micro-focus synchrotron beamlines are discussed in the first part. In the following, we provide examples of applications of the setup for thermal studies of inorganic and nanostructured hybrid systems with nano-focus X-ray diffraction. In the last part, we report for the first time on the in situ nanocalorimetry/fast micro-focus X-ray scattering experiments on a semicrystalline polymer using heating ramps of 2000 °C/s at the X-ray detector acquisition rate of 4 ms/frame. For such real-time combination, one has to employ fast X-ray detectors with a high photon efficiency. In addition, one would absolutely need intense sources of X-rays such as the ones provided at the ID beamlines of the ESRF. We show that the setup capable of simultaneously probing the microstructural and thermodynamic properties can be useful for studies of materials having complex thermal behavior. In particular, the microstructural evolution during fast heating of a typical aromatic polyester, poly(trimethylene terephthalate), can be analyzed in much detail, which sheds light on the long-standing issue of multiple melting behavior in semirigid-chain polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen LH, Ramanath G, Lai SL, Ma Z, Lee S, Allman DDJ, Fuchs KP (1994) 1,000,000 °C/s thin film electrical heater: In situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett 64(4):417

    Article  Google Scholar 

  2. Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Appl Phys Lett 67(9):1229

    Article  Google Scholar 

  3. Lai SL, Allen LH (1998) MEMS-based scanning calorimeter for thermodynamic properties of nanostructures. Microscale Thermophys Eng 2(1):11

    Article  Google Scholar 

  4. Kwan AT, Efremov MY, Olson EA, Schiettekatte F, Zhang M, Geil PH, Allen LH (2001) Nanoscale calorimetry of isolated polyethylene single crystals. J Polymer Sci: Part B 39(11):1237

    Article  Google Scholar 

  5. Olson EA, Efremov MY, Zhang M, Zhang ZS, Allen LH (2003) The design and operation of a mems differential scanning nanocalorimeter for high-speed heat capacity measurements of Ultrathin films. J Microelectromech Syst 12(3):355

    Article  Google Scholar 

  6. Efremov MY, Olson EA, Zhang M, Allen LH (2003) Glass transition of thin films of poly(2-vinyl pyridine) and poly(methyl methacrylate): nanocalorimetry measurements. Thermochim Acta 403(1):37

    Article  Google Scholar 

  7. Minakov AA, Roy SB, Bugoslavsky YV, Cohen LF (2005) Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields. Rev Sci Instrum 76:043906

    Article  Google Scholar 

  8. Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177

    Article  Google Scholar 

  9. Merzlyakov M (2006) Method of rapid (100 000 Ks−1) controlled cooling and heating of thin samples. Thermochim Acta 442(1-2):52

    Article  Google Scholar 

  10. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK∕s. Rev Sci Instrum 78:073902

    Article  Google Scholar 

  11. Donald WA, Leib RD, O’Brien JT, Holm AIS, Williams ER (2008) Nanocalorimetry in mass spectrometry: a route to understanding ion and electron solvation. Proc Natl Acad Sci 105(47):18102

    Article  Google Scholar 

  12. Grapes MD, LaGrange T, Woll K, Reed BW, Campbell GH, LaVan DA, Weihs TP (2014) In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter. APL Materials 11(2):116102

    Article  Google Scholar 

  13. Grapes M, LaGrange T, Friedman L, Reed B, Campbell G, Weihs T, LaVan D (2014) Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev Sci Instrum 85:084902

    Article  Google Scholar 

  14. Xiao KC, Gregoire JM, McCluskey PJ, Dale D, Vlassak JJ (2013) Scanning AC nanocalorimetry combined with in-situ X-ray diffraction. J Appl Phys 113:24

    Google Scholar 

  15. Gregoire JM, Xiao KC, McCluskey PJ, Dale D, Cuddalorepatta G, Vlassak JJ (2013) In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe0.84Ni0.16 thin-film sample. Appl Phys Lett 102:20

    Article  Google Scholar 

  16. McCluskey P, Xiao K, Gregoire J, Dale D, Vlassak J (2015) Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys. Thermochim Acta 603:53

    Article  Google Scholar 

  17. Gregoire JM, McCluskey PJ, Dale D, Ding S, Schroers J, Vlassak JJ (2012) Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scr Mater 66(3–4):178

    Article  Google Scholar 

  18. van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Androsch R (2013) Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta 563:33

    Article  Google Scholar 

  19. Baeten D, Mathot VBF, Pijpers TFJ, Verkinderen O, Portale G, Puyvelde P, Goderis B (2015) Simultaneous synchrotron WAXD and fast scanning (Chip) Calorimetry: on the (Isothermal) crystallization of HDPE and PA11 at high supercoolings and cooling rates up to 200 °C s−1. Macromol Rapid Commun 36:1184–1191

    Article  Google Scholar 

  20. Piazzon N, Rosenthal M, Bondar A, Spitzer D, Ivanov DA (2010) Characterization of explosives traces by the nanocalorimetry. J Phys Chem Solids 71:114

    Article  Google Scholar 

  21. Spitzer D, Bonnot K, Schlur L, Piazzon N, Doblas D, Ivanov D, Cottineau T, Keller V (2014) Bio-inspired explosive sensors and specific signatures. Procedia Eng 87:740

    Article  Google Scholar 

  22. Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YAI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) High-resolution thermal imaging with a combination of nano-focus x-ray diffraction and ultra-fast chip calorimetry. J Synchrotron Radiat 21:223

    Article  Google Scholar 

  23. Riekel C, Di Cola E, Burghammer M, Reynolds M, Rosenthal M, Doblas D, Ivanov DA (2015) thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. Langmuir 31:529

    Article  Google Scholar 

  24. Vonk CG, Kortleve G (1967) X-ray small-angle scattering of bulk polyethylene. Kolloid Z Polym 220:19

    Article  Google Scholar 

  25. Ruland W (1971) Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J Appl Cryst 4:70

    Article  Google Scholar 

  26. Jiang Z, Imrie CT, Hutchinson JM (2002) Temperature modulated differential scanning calorimetry. Part I: Effects of heat transfer on the phase angle in dynamic ADSC in the glass transition region. Thermochim Acta 387:75

    Article  Google Scholar 

  27. Somorjai GA, Park JY (2008) Colloid science of metal nanoparticles in 2D and 3D structures: challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49:126

    Article  Google Scholar 

  28. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 2:171

    Article  Google Scholar 

  29. Sanchot A, Baffou G, Marty R, Arbouet A, Quidant R, Girard C, Dujardin E (2012) Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6:3434

    Article  Google Scholar 

  30. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591

    Article  Google Scholar 

  31. Pelaz B, Jaber S, de Aberasturi DJ, Wulf W, Aida T, Fuente JMDL, Gaub HE, Josephson L, Kagam CK, Kotov NA, Liz-Marzan LM, Matoussi H, Mulvaney P, Murray CB, Rogach AL, Weiss PS, Willner I, Parak WJ (2012) The state of nanoparticle-based nanoscience and biotechnology: progress. Promises Challenges ACS Nano 6:8468

    Article  Google Scholar 

  32. Ristau R, Tiruvalam R, Clasen PL, Gorskowski EP, Harmer MP, Kiely CJ (2009) Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull 42:133

    Article  Google Scholar 

  33. Ueda K, Kawasaki T, Hasegawa H, Tanji T, Ichihashi M (2008) First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. Surf Interface Anal 40:1725

    Article  Google Scholar 

  34. Smith BL, Hutchison JE (2013) Transformations during sintering of small (D-core < 2 nm) ligand-stabilized gold nanoparticles: influence of ligand functionality and core size. J Phys Chem C 117:25127

    Article  Google Scholar 

  35. Reynolds M, Marradi M, Imberty A, Penades S, Perez S (2012) Multivalent gold glycoclusters: high affinity molecular recognition by bacterial lectin PA-IL. Chem Eur J 18:4264

    Article  Google Scholar 

  36. Marradi M, Martin-Lomas M, Penades S (2010) Glyconanoparticles: polyvalent tools to study carbohydrate-based interactions. Adv Carbohydr Chem Biochem 64:211

    Article  Google Scholar 

  37. Simon C, Peterlechner M, Wilde G (2015) Experimental determination of the nucleation rates of undercooled micron-sized liquid droplets based on fast chip calorimetry. Thermochim Acta 603:39

    Article  Google Scholar 

  38. Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, Ivanov DA (2016) Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J. doi:10.1016/j.eurpolymj.2015.12.031

    Google Scholar 

  39. Ivanov DA, Hocquet S, Dosière M, Koch M (2004) Exploring the melting of a semirigid-chain polymer with temperature-resolved small-angle X-ray scattering. Eur Phys J E 13(4):363

    Article  Google Scholar 

  40. Ivanov DA, Bar G, Dosière M, Koch MHJ (2008) A novel view on crystallization and melting of semirigid chain polymers: The case of poly(trimethylene terephthalate). Macromolecules 41:9224

    Article  Google Scholar 

  41. Lee Y, Porter RS (1987) Double-melting behavior of poly(ether ether ketone). Macromolecules 20:1336

    Article  Google Scholar 

  42. Holdsworth PG, Turner-Jones A (1971) The melting behavior of heat crystallized poly (ethylene terephthalate). Polymer 12:195

    Article  Google Scholar 

  43. Ivanov DA, Jonas AM, Legras R (2000) The crystallization of poly (aryl-ether-ether-ketone)(PEEK): reorganization processes during gradual reheating of cold-crystallized samples. Polymer 41:3719

    Article  Google Scholar 

  44. Ivanov DA, Jonas AM (1998) Isothermal growth and reorganization upon heating of a single poly (aryl-ether-ether-ketone)(PEEK) spherulite, as imaged by atomic force microscopy. Macromolecules 31:4546

    Article  Google Scholar 

  45. Ivanov DA, Legras R, Jonas AM (1999) Interdependencies between the Evolution of Amorphous and Crystalline Regions during Isothermal Cold Crystallization of Poly (ether-ether-ketone). Macromolecules 32:1582

    Article  Google Scholar 

  46. Blundell DJ, Osborn BN (1983) The morphology of poly (aryl-ether-ether-ketone). Polymer 24:953

    Article  Google Scholar 

  47. Olley RH, Bassett DC, Blundell DJ (1986) Permanganic etching of PEEK. Polymer 27:344

    Article  Google Scholar 

  48. Kumar SK, Yoon DY (1989) Lattice model for interphases in binary semicrystalline/amorphous polymer blends. Macromolecules 22:4098

    Article  Google Scholar 

  49. Kumar SK, Yoon DY (1991) A lattice model for interphases in binary semicrystalline/amorphous polymer blends 2 Effects of tight fold energy. Macromolecules 24:5414

    Article  Google Scholar 

  50. Rosenthal M, Melnikov AP, Doblas D, Burghammer M, Ivanov DA (in preparation)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of education and science of the Russian Federation (contract № 14.604.21.0079 (RFMEFI60414X0079) from June 30, 2014) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenthal, M. et al. (2016). Design of an In Situ Setup Combining Nanocalorimetry and Nano- or Micro-focus X-Ray Scattering to Address Fast Structure Formation Processes. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_9

Download citation

Publish with us

Policies and ethics