Skip to main content

Reliable Absolute Vapor Pressures of Extremely Low Volatile Compounds from Fast Scanning Calorimetry

  • Chapter
  • First Online:

Abstract

Vapor pressure determination of extremely low volatile compounds, e.g., ionic liquids, is challenging and time-consuming using conventional techniques. Particularly, ionic liquids tend to decompose already at temperatures where the vapor pressure is still very low. Conventional methods for the determination of evaporation rates are thus limited to temperatures below the decomposition temperature where evaporation proceeds very slowly. A new method for the vapor pressure determination of low-volatile compounds, presented here, is able to overcome this limitation using differential fast scanning calorimetry on very short time scales in inert atmospheres. The method is based on the relatively fast evaporation of nanogram samples, exhibiting a significantly enhanced (up to a factor of 104) surface-to-volume ratio compared to conventional thermogravimetric samples. Due to extremely high heating rates, the sample is exposed to the thermal stress only for milliseconds. In these conditions the evaporation dominates in the mass loss even at temperatures above the possible onset of the decomposition process. In addition, since the method allows very high heating and cooling rates (up to 106 K s−1) evaporation of the samples on the way to and from the evaporation temperature is avoided and thus much higher temperatures can be reached in the measurement of the mass loss rate as compared to conventional methods. This method was tested using the diffusion pump oil Santovac® 5 and the ionic liquid [EMIm][NTf2] at temperatures up to 780 K and in atmospheres of different inert gases. The absolute vapor pressures of several aprotic ionic liquids: [EMIm][NTf2], [BMIm][Br], [BMIm][BF4], [BMIm][PF6], [EMIm][Cl], [BMIm][Cl], [EMIm][NO3], and [BMIm][NO3] were measured. The vapor pressures were fitted to the Clarke–Glew equation. The vaporization enthalpies and boiling temperatures of the ionic liquids were estimated. The advantages and limitations of this new method of absolute vapor pressure determination were discussed and the results are compared with the data available in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verevkin SP et al (2012) Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim Acta 538:55–62

    Article  Google Scholar 

  2. Sabbah R, Chastel R, Laffitte M (1974) Thermodynamics of Nitrogenated Compounds: 1. Calorimetric Study of Sublimation Enthalpies of 3 Aminobenzoic Acids. Can J Chem-Revue Canadienne De Chimie 52(12):2201–2205

    Article  Google Scholar 

  3. Ahrenberg M et al (2014) Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Phys Chem Chem Phys 16(7):2971–2980

    Article  Google Scholar 

  4. Wasserscheid P, Keim W (2000) Ionic liquids—New “solutions” for transition metal catalysis. Angew Chem-Int Ed Engl 39(21):3772–3789

    Article  Google Scholar 

  5. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398

    Article  Google Scholar 

  6. Armstrong JP et al (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9(8):982–990

    Article  Google Scholar 

  7. Paulechka YU et al (2005) Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Thermochim Acta 439(1-2):158–160

    Article  Google Scholar 

  8. Rebelo LPN et al (2005) On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B 109(13):6040–6043

    Article  Google Scholar 

  9. Zaitsau DH et al (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110(22):7303–7306

    Article  Google Scholar 

  10. Bier M, Dietrich S (2010) Vapour pressure of ionic liquids. Mol Phys 108(2):211–214

    Article  Google Scholar 

  11. Earle MJ et al (2006) The distillation and volatility of ionic liquids. Nature 439(7078):831–834

    Article  Google Scholar 

  12. Widegren JA et al (2007) Relative volatilities of ionic liquids by vacuum distillation of mixtures. J Phys Chem B 111(30):8959–8964

    Article  Google Scholar 

  13. Heym F et al (2010) An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Phys Chem Chem Phys 12(38):12089–12100

    Article  Google Scholar 

  14. Verevkin SP et al (2011) A New Method for the Determination of Vaporization Enthalpies of Ionic Liquids at Low Temperatures. J Phys Chem B 115(44):12889–12895

    Article  Google Scholar 

  15. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505(1-2):1–13

    Article  Google Scholar 

  16. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505(1-2):14–21

    Article  Google Scholar 

  17. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78(7)

    Google Scholar 

  18. Cebe P et al (2013) Beating the Heat—Fast Scanning Melts Silk Beta Sheet Crystals. Sci Rep 3

    Google Scholar 

  19. Chen Y et al (2012) Quantitative Research on the Vaporization and Decomposition of EMIM Tf2N by Thermogravimetric Analysis-Mass Spectrometry. Ind Eng Chem Res 51(21):7418–7427

    Article  Google Scholar 

  20. Emel‘yanenko VN, Verevkin SP, Heintz A (2007) The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J Am Chem Soc 129(13):3930–3937

    Article  Google Scholar 

  21. Heym F et al (2011) Analysis of evaporation and thermal decomposition of ionic liquids by thermogravimetrical analysis at ambient pressure and high vacuum. Green Chem 13(6):1453–1466

    Article  Google Scholar 

  22. Rocha MAA et al (2011) High-Accuracy Vapor Pressure Data of the Extended C(n)C(1)im Ntf(2) Ionic Liquid Series: Trend Changes and Structural Shifts. J Phys Chem B 115(37):10919–10926

    Article  Google Scholar 

  23. van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432(2):192–201

    Article  Google Scholar 

  24. Poel GV et al (2011) Recommendation for Temperature Calibration of Fast Scanning Calorimeters (FsCs) for Sample Mass and Scan Rate. Beuth Verlag GmbH, Berlin

    Google Scholar 

  25. Adam M et al (2014) In vivo and in vitro investigations of a nanostructured coating material—a preclinical study. Int J Nanomedicine 9(1):975–984

    Article  Google Scholar 

  26. Shoifet E, Schulz G, Schick C (2015) Temperature modulated differential scanning calorimetry–extension to high and low frequencies. Thermochim Acta 603:227–236

    Article  Google Scholar 

  27. Ge R et al (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction. J Chem Eng Data 53(9):2148–2153

    Article  Google Scholar 

  28. Hu H-C et al (2011) Molar heat capacity of four aqueous ionic liquid mixtures. Thermochim Acta 519(1-2):44–49

    Article  Google Scholar 

  29. Kabo GJ et al (2004) Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J Chem Eng Data 49(3):453–461

    Article  Google Scholar 

  30. Paulechka YU et al (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39(6):866–877

    Article  Google Scholar 

  31. Paulechka YU et al (2010) Heat Capacity of Ionic Liquids: Experimental Determination and Correlations with Molar Volume. J Chem Eng Data 55(8):2719–2724

    Article  Google Scholar 

  32. Paulechka YU et al (2007) Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. J Chem Thermodyn 39(1):158–166

    Article  Google Scholar 

  33. Strechan AA et al (2008) Thermochemical properties of 1-butyl-3-methylimidazolium nitrate. Thermochim Acta 474(1-2):25–31

    Article  Google Scholar 

  34. Strechan AA et al (2008) Low-temperature heat capacity of hydrophilic ionic liquids BMIM CF3COO and BMIM CH3COO and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn 40(4):632–639

    Article  Google Scholar 

  35. Thomson W (1871) LX. On the equilibrium of vapour at a curved surface of liquid. Philosophical Magazine Series 4 42(282):448–452

    Google Scholar 

  36. Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106(6):1334–1344

    Article  Google Scholar 

  37. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21(9):3963–3971

    Article  Google Scholar 

  38. Mollaret R et al (2004) Experimental and numerical investigation of the evaporation into air of a drop on a heated surface. Chem Eng Res Design 82(A4):471–480

    Article  Google Scholar 

  39. Sodtke C, Ajaev VS, Stephan P (2007) Evaporation of thin liquid droplets on heated surfaces. Heat Mass Transf 43(7):649–657

    Article  Google Scholar 

  40. VDI (2006) VDI-Wärmeatlas. 10th ed, ed. V. Gesellschaft. Springer:Düsseldorf

    Google Scholar 

  41. Bich E, Millat J, Vogel E (1990) The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000 K in the limit of zero density and at 0.101325 MPa. J Phys Chem Ref Data 19(6):1289–1305

    Article  Google Scholar 

  42. Cole WA, Wakeham WA (1985) The viscosity of Nitrogen, Oxygen and their binary mixtures in the limit of zero density. J Phys Chem Ref Data 14(1):209–226

    Article  Google Scholar 

  43. Fuller EN, Schettler P, Giddings JC (1966) A new method for prediction of binary gas phase diffusion coefficients. Ind Eng Chem 58(5):19

    Article  Google Scholar 

  44. Verevkin SP et al (2013) Making Sense of Enthalpy of Vaporization Trends for Ionic Liquids: New Experimental and Simulation Data Show a Simple Linear Relationship and Help Reconcile Previous Data. J Phys Chem B 117(21):6473–6486

    Article  Google Scholar 

  45. Clarke ECW, Glew DN (1966) Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc 62(519P):539

    Article  Google Scholar 

  46. Esperanca JMSS et al (2010) Volatility of Aprotic Ionic Liquids—A Review. J Chem Eng Data 55(1):3–12

    Article  Google Scholar 

  47. Zaitsau DH et al (2011) Vaporization Enthalpies of Imidazolium Based Ionic Liquids: Dependence on Alkyl Chain Length. ChemPhysChem 12(18):3609–3613

    Article  Google Scholar 

  48. Tolstoguzov AB (2007) Mass Spectrom 4:283–288

    Google Scholar 

  49. Santos L et al (2007) Ionic liquids: First direct determination of their cohesive energy. J Am Chem Soc 129(2):284–285

    Article  Google Scholar 

  50. Luo HM, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112(33):10077–10081

    Article  Google Scholar 

  51. Lovelock KRJ et al (2010) Vaporisation of an ionic liquid near room temperature. Phys Chem Chem Phys 12(31):8893–8901

    Article  Google Scholar 

  52. Wang CM et al (2010) Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys Chem Chem Phys 12(26):7246–7250

    Article  Google Scholar 

  53. Ngo HL et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Article  Google Scholar 

  54. Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind Eng Chem Res 46(4):1338–1344

    Article  Google Scholar 

  55. Valderrama JO, Sanga WW, Lazzus JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47(4):1318–1330

    Article  Google Scholar 

  56. Beck M et al (2013) The Ideal Quenching Medium?- Characterisation of Ionic Liquids for Heat Treatment of Metallic Components. HTM J Heat Treatm Mat 68:214–223

    Article  Google Scholar 

  57. Beck M et al (2015) Ionic Liquids as new quenching media for aluminium alloys and steels. J Heat Treatm Mat 70(2):73–80

    Article  Google Scholar 

  58. Schmidt C et al (2014) Room temperature ionic liquids in a heat treatment process for metals. RSC Adv 4(98):55077–55081

    Article  Google Scholar 

  59. Cammenga HK, Schulze FW, Theuerl W (1977) Vapor pressure and evaporation coefficient of glycerol. J Chem Eng Data 22(2):131–134

    Article  Google Scholar 

  60. Hohne GWH et al (1990) The temperature calibration of scanning calorimeters. Thermochim Acta 160(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahrenberg, M. et al. (2016). Reliable Absolute Vapor Pressures of Extremely Low Volatile Compounds from Fast Scanning Calorimetry. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_8

Download citation

Publish with us

Policies and ethics