Skip to main content

Scanning AC Nanocalorimetry and Its Applications

  • Chapter
  • First Online:
Book cover Fast Scanning Calorimetry
  • 2024 Accesses

Abstract

Scanning AC nanocalorimetry using thermistor-based nanocalorimetry sensors enables calorimetric measurements on nanoscale quantities of materials over a wide range of scanning rates (from isothermal to 3 × 103 K/s), temperatures (up to 1400 K), and environments. The range of scanning rates bridges the gap between adiabatic nanocalorimetry and bulk calorimetry. As such, the technique can be used to address a broad range of materials problems, and it is especially well suited to investigate the kinetics of phase transformations in thin films. Because AC nanocalorimetry is largely insensitive to heat loss, it is ideal for studying solid-state reactions at elevated temperatures, as well as solid–gas phase reactions. The dynamic range of scanning AC nanocalorimetry makes it compatible with in situ characterization techniques, such as X-ray diffraction, allowing simultaneous structural and thermal characterization of the samples as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höhne G, Hemminger W and Flammersheim HJ (2003) Differential scanning calorimetry. Springer Science & Business Media

    Google Scholar 

  2. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  Google Scholar 

  3. Denlinger D, Abarra E, Allen K, Rooney P, Messer M, Watson S, Hellman F (1994) Thin-film microcalorimeter for heat-capacity measurements from 1.5 K to 800 K. Rev Sci Instrum 65(4):946–959

    Article  Google Scholar 

  4. Lai S, Ramanath G, Allen L, Infante P, Ma Z (1995) High-speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity. Appl Phys Lett 67:1229

    Article  Google Scholar 

  5. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77(1):99–102

    Article  Google Scholar 

  6. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78(7):073902

    Article  Google Scholar 

  7. Minakov AA, Bugoslavsky YV, Schick C (1998) Improvement of AC calorimetry for simultaneous measurements of heat capacity and thermal conductivity of polymers. Thermochim Acta 317(2):117–131

    Article  Google Scholar 

  8. McCluskey PJ, Vlassak JJ (2010) J Mater Res 25(11):2086–2100

    Article  Google Scholar 

  9. Lopeandía AF, Rodríguez-Viejo J, Chacón M, Clavaguera-Mora MT, Muñoz FJ (2006) J Micromech Microeng 16(5):965

    Article  Google Scholar 

  10. Minakov A, Adamovsky S, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177–185

    Article  Google Scholar 

  11. Revaz B, Zink B, Hellman F (2005) Si-N membrane-based microcalorimetry: heat capacity and thermal conductivity of thin films. Thermochim Acta 432(2):158–168

    Article  Google Scholar 

  12. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505(1):1–13

    Article  Google Scholar 

  13. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505(1):14–21

    Article  Google Scholar 

  14. Lai S, Ramanath G, Allen L, Infante P (1997) Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl Phys Lett 70:43

    Article  Google Scholar 

  15. Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75(1):179–191

    Article  Google Scholar 

  16. Efremov MY, Warren J, Olson E, Zhang M, Kwan A, Allen L (2002) Thin-film differential scanning calorimetry: a new probe for assignment of the glass transition of ultrathin polymer films. Macromolecules 35(5):1481–1483

    Article  Google Scholar 

  17. Lacey A, Price D, Reading M (2006) Theory and practice of modulated temperature differential scanning calorimetry. In: Reading M, Hourston DJ (eds) Modulated temperature differential scanning calorimetry. Springer, Berlin, pp 1–81

    Chapter  Google Scholar 

  18. Handler P, Mapother D, Rayl M (1967) AC measurement of heat capacity of nickel near its critical point. Phys Rev Lett 19(7):356–358

    Article  Google Scholar 

  19. Sullivan PF, Seidel G (1968) Steady-state AC-temperature calorimetry. Phys Rev 173(3):679–685

    Article  Google Scholar 

  20. Kraftmakher Y (2002) Modulation calorimetry and related techniques. Phys Rep 356(1):1–117

    Article  Google Scholar 

  21. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  22. Xiao K, Gregoire JM, McCluskey PJ, Vlassak JJ (2012) A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials. Rev Sci Instrum 83(11):114901

    Article  Google Scholar 

  23. McCluskey PJ, Vlassak JJ (2010) Nano-thermal transport array: an instrument for combinatorial measurements of heat transfer in nanoscale films. Thin Solid Films 518(23):7093–7106

    Article  Google Scholar 

  24. Olson EA, Efremov MY, Zhang M, Zhang Z, Allen LH (2003) The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12(3):355–364

    Article  Google Scholar 

  25. Minakov A, Van Herwaarden A, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461(1):96–106

    Article  Google Scholar 

  26. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45(11):3755–3763

    Article  Google Scholar 

  27. Chen W, Zhou D, Xue G, Schick C (2009) Chip calorimetry for fast cooling and thin films: a review. Front Chem China 4(3):229–248

    Article  Google Scholar 

  28. Minakov AA, Adamovsky SA, Schick C (2003) Advanced two-channel ac calorimeter for simultaneous measurements of complex heat capacity and complex thermal conductivity. Thermochim Acta 403(1):89–103

    Article  Google Scholar 

  29. Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44(20):2996–3005

    Article  Google Scholar 

  30. Xiao K, Gregoire JM, McCluskey PJ, Dale D, Vlassak JJ (2013) Scanning AC nanocalorimetry combined with in-situ x-ray diffraction. J Appl Phys 113(24):243501

    Article  Google Scholar 

  31. Xiao K, Vlassak JJ (2015) Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques. Thermochim Acta 603:29–38

    Article  Google Scholar 

  32. Xiao K, Lee D, Vlassak JJ (2014) Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation. Appl Phys Lett 105(17):171901

    Article  Google Scholar 

  33. Shoifet E, Chua Y, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instrum 84(7):073903

    Article  Google Scholar 

  34. Corbino OM (1910) Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Physik Zeitschrift XI:413

    Google Scholar 

  35. McBride BJ, Gordon S and Reno MA (2001) Thermodynamic data for fifty reference elements. NASA Technical Memorandum 3287/REV1

    Google Scholar 

  36. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19

    Article  Google Scholar 

  37. Lee D, Sim G-D, Xiao K, Choi YS, Vlassak JJ (2013) Scanning AC nanocalorimetry study of Zr/B reactive multilayers. J Appl Phys 114(21):214902

    Article  Google Scholar 

  38. Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18(2):198–203

    Article  Google Scholar 

  39. Turnbull D (1950) Isothermal rate of solidification of small droplets of mercury and tin. J Chem Phys 18:768–769

    Article  Google Scholar 

  40. Turnbull D (1952) Kinetics of solidification of supercooled liquid mercury droplets. J Chem Phys 20(3):411–424

    Article  Google Scholar 

  41. Wilde G, Sebright J, Perepezko J (2006) Bulk liquid undercooling and nucleation in gold. Acta Mater 54(18):4759–4769

    Article  Google Scholar 

  42. Wilde G, Santhaweesuk C, Sebright J, Bokeloh J, Perepezko J (2009) Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals. J Phys Condens Matter 21(46):464113

    Article  Google Scholar 

  43. Gregoire JM, Xiao K, McCluskey PJ, Dale D, Cuddalorepatta G, Vlassak JJ (2013) In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe0.84Ni0.16 thin-film sample. Appl Phys Lett 102(20):201902

    Article  Google Scholar 

  44. McCluskey PJ, Xiao K, Gregoire JM, Dale D, Vlassak JJ (2015) Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni-Ti-Hf high-temperature shape memory alloys. Thermochim Acta 603:53–62

    Article  Google Scholar 

  45. Gregoire JM, Dale D, Kazimirov A, DiSalvo FJ, van Dover RB (2009) High-energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev Sci Instrum 80(12):123905

    Article  Google Scholar 

  46. Yang B, Gao Y, Zou C, Zhai Q, Abyzov AS, Zhuravlev E, Schmelzer JWP, Schick C (2010) Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl Phys A 104(1):189–196

    Article  Google Scholar 

  47. Yang B, Abyzov A, Zhuravlev E, Gao Y, Schmelzer J, Schick C (2013) Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. J Chem Phys 138:054501

    Article  Google Scholar 

  48. Gregoire JM, McCluskey PJ, Dale D, Ding S, Schroers J, Vlassak JJ (2012) Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scr Mater 66(3):178–181

    Article  Google Scholar 

  49. Leskelä M, Leskelä T, Niinistö L (1993) Thermoanalytical methods in the study of inorganic thin-films. J Therm Anal 40(3):1077–1088

    Article  Google Scholar 

  50. Lin J, Mishra B, Moore J, Sproul W (2008) A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surf Coat Technol 202(14):3272–3283

    Article  Google Scholar 

  51. Cox B (1976) Oxidation of zirconium and its alloys. In: Fontana MG, Staehle RW (eds) Advances in corrosion science and technology. Springer, Berlin, pp 173–391

    Chapter  Google Scholar 

  52. Gulbransen EA, Andrew KF (1949) Kinetics of the reactions of zirconium with O2, N2 and H2. Trans AIME 185:515–525

    Google Scholar 

  53. Cubicciotti D (1950) The oxidation of zirconium at high temperatures. J Am Chem Soc 72(9):4138–4141

    Article  Google Scholar 

  54. Cox B, Pemsler J (1968) Diffusion of oxygen in growing zirconia films. J Nucl Mater 28(1):73–78

    Article  Google Scholar 

  55. Highmore R, Evetts J, Greer A, Somekh R (1987) Differential scanning calorimetry study of solid-state amorphization in multilayer thin-film Ni/Zr. Appl Phys Lett 50(10):566–568

    Article  Google Scholar 

  56. Lee D, Sim G-D, Xiao K, Vlassak JJ (2014) Low-temperature synthesis of ultra-high-temperature coatings of ZrB2 using reactive multilayers. J Phys Chem C 118:21192–21198

    Article  Google Scholar 

  57. Motemani Y, McCluskey PJ, Zhao C, Tan MJ, Vlassak JJ (2011) Analysis of Ti-Ni-Hf shape memory alloys by combinatorial nanocalorimetry. Acta Mater 59(20):7602–7614

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support by the Air Force Office of Scientific Research under Grants FA9550-08-1-0374 and FA9550-12-1-0098, and by the Materials Research Science and Engineering Center at Harvard University, which is funded by the National Science Foundation under Award No. DMR-14-20570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. Vlassak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xiao, K., Vlassak, J.J. (2016). Scanning AC Nanocalorimetry and Its Applications. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_6

Download citation

Publish with us

Policies and ethics