Skip to main content

Fast Scanning Calorimetry of Silk Fibroin Protein: Sample Mass and Specific Heat Capacity Determination

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

Our work over the past decade has involved thermal studies of fibrous proteins, especially those produced by silkworms and spiders, as well as genetically modified variants such as copolymers that maintain some of the important properties of the fibrous proteins [1–9]. The goals of our research include quantifying the thermal properties of crystallizable fibrous proteins, establishing connections between bio-derived fibrous proteins and synthetic polymers, and developing a knowledge base to enable use of fibrous proteins like silk, inside the human body in novel ways [10–13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu X, Kaplan D, Cebe P (2006) Determining beta sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–6170

    Article  Google Scholar 

  2. Hu X, Kaplan D, Cebe P (2008) Dynamic protein-water relationships during beta sheet formation. Macromolecules 41(11):3939–3948

    Article  Google Scholar 

  3. Hu X, Lu Q, Kaplan D, Cebe P (2009) Microphase separation controlled beta sheet crystallization kinetics in fibrous proteins. Macromolecules 42(6):2079–2087

    Article  Google Scholar 

  4. Hu X, Kaplan D, Cebe P (2007) Effect of water on thermal properties of silk fibroin. Thermochim Acta 461(1–2):137–144, Special issue

    Article  Google Scholar 

  5. Pyda M, Hu X, Cebe P (2008) Heat capacity of silk fibroin based on vibrational motion of poly(amino acid)s in the presence and absence of water. Macromolecules 41(13):4786–4793

    Article  Google Scholar 

  6. Huang W, Krishnaji S, Rabotyagova Tokareva O, Kaplan D, Cebe P (2014) Influence of water on protein transitions: thermal analysis. Macromolecules 47(22):8098–8106

    Article  Google Scholar 

  7. Huang W, Krishnaji ST, Kaplan D, Cebe P (2011) Heat capacity of spider silk-like block copolymers. Macromolecules 44:5299–5309

    Article  Google Scholar 

  8. Cebe P, Hu X, Kaplan D, Zhuravlev E, Wurm A, Arbeiter D, Schick C (2013) Beating the heat—fast scanning melts beta sheet crystals. Sci Rep 3:1130

    Article  Google Scholar 

  9. Cebe P, Partlow BP, Kaplan D, Zhuravlev E, Wurm A, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14

    Google Scholar 

  10. Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511–517

    Article  Google Scholar 

  11. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531

    Article  Google Scholar 

  12. Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL (2009) Silk film biomaterials for cornea tissue engineering. Biomaterials 30(7):1299–1308

    Article  Google Scholar 

  13. McGrath K, Kaplan D (eds) (1996) Protein-based materials. Birkhauser Press, Boston, MA, pp 103–133

    Google Scholar 

  14. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8):991–1007

    Article  Google Scholar 

  15. Agarwal N, Hoagland DA, Farris RJ (1997) Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films. J Appl Polym Sci 63:401–410

    Article  Google Scholar 

  16. Magoshi J, Magoshi Y (1975) Physical properties and structure of silk: II. Dynamic mechanical and dielectric properties of silk fibroin. J Polym Sci Polym Phys Ed 13:1347–1361

    Article  Google Scholar 

  17. Motta A, Fambri L, Migliaresi LC (2002) Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Phys 203:1658–1665

    Article  Google Scholar 

  18. Yuan Q, Yao J, Huang L, Chen X, Shao ZZ (2010) Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin. Polymer 51:6278–6283

    Article  Google Scholar 

  19. Guan J, Porter D, Vollrath F (2013) Thermally induced changes in dynamic mechanical properties of native silks. Biomacromolecules 14(3):930–937

    Article  Google Scholar 

  20. Wang Y, Guan J, Hawkins N, Porter D, Shao ZZ (2014) Understanding the variability of properties in Antheraea pernyi silk fibres. Soft Matter 10:6321–6331

    Article  Google Scholar 

  21. Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed (10(4)-degrees-C/S) scanning microcalorimetry with monolayer sensitivity (J/M(2)). Appl Phys Lett 67(9):1229–1231

    Article  Google Scholar 

  22. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403(1):55–63

    Article  Google Scholar 

  23. Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejoa J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104

    Article  Google Scholar 

  24. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78(7):073902–073910

    Article  Google Scholar 

  25. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505(1–2):14–21

    Article  Google Scholar 

  26. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505(1–2):1–13

    Article  Google Scholar 

  27. de la Rama LP, Hu L, Ye Z, Efremov MY, Allen LH (2013) Size effect and odd–even alternation in the melting of single and stacked AgSCn layers: synthesis and nanocalorimetry measurements. J Am Chem Soc 135(38):14286–14298

    Article  Google Scholar 

  28. Porter D, Vollrath F, Tian K, Chen X, Shao Z (2009) A kinetic model for thermal degradation in polymers with specific application to proteins. Polymer 50:1814–1818

    Article  Google Scholar 

  29. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522(1–2):36–45

    Article  Google Scholar 

  30. Poel G, Istrate D, Magon A, Mathot V (2012) Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110:1533–1546

    Article  Google Scholar 

  31. Rockwood DN, Preda CR, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631

    Article  Google Scholar 

  32. Yu L, Hu X, Kaplan D, Cebe P (2010) Dielectric relaxation spectroscopy of hydrated and dehydrated silk fibroin cast from aqueous solution. Biomacromolecules 11(10):2766–2775

    Article  Google Scholar 

  33. Magoshi J, Magoshi Y, Nakamura S, Kasai N, Kakudo M (1977) Physical properties and structure of silk: V. Thermal behavior of silk fibroin in the random-coil conformation. J Polym Sci Polym Phys Ed 15:1675–1683

    Article  Google Scholar 

  34. Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177–185

    Article  Google Scholar 

  35. Siyang G, Simon SL (2015) Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochim Acta 603:123–127

    Article  Google Scholar 

  36. Advanced Thermal Analysis System (ATHAS) data base. Available at: http://www.springermaterials.com

Download references

Acknowledgements

Support for this research was provided to PC by the Tufts University Faculty Supported Leave program, the National Science Foundation Polymers Program through DMR-1206010, and the German Academic Exchange Service, DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cebe, P., Partlow, B.P., Kaplan, D.L., Wurm, A., Zhuravlev, E., Schick, C. (2016). Fast Scanning Calorimetry of Silk Fibroin Protein: Sample Mass and Specific Heat Capacity Determination. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_5

Download citation

Publish with us

Policies and ethics