Skip to main content

Fast Scanning Calorimetry–Fast Thermal Desorption Technique: The Thin Wire Approach

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

For the first time, we give an exceptionally detailed description of the fast scanning calorimetry (FSC) apparatus developed in our laboratory at the George Washington University. Our experimental approach is based on using a thin (10 μm in diameter) filament for vapor deposition of bulk-like and ultrathin films of model organic glass formers and noncrystalline aqueous phases at temperatures from 95 to 180 K. These samples are then subjected to rapid heating with rates in excess of 105 K/s, and the effective heat capacity is measured as a function of temperature. Because the filament acts simultaneously as both a heater and a temperature sensor, the FSC apparatus utilizes a very simple design for data acquisition and other systems. We discuss the fundamental advantages of our FSC approach, describe new temperature calibration procedures and other instrumental tests, point out potential pitfalls and experimental design mistakes, and illustrate the capabilities of the FSC approach with selected results from our most recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faubel M, Kisters T (1989) Non-equilibrium molecular evaporation of carboxylic-acid dimers. Nature 339(6225):527–529. doi:10.1038/339527a0

    Article  Google Scholar 

  2. Sadtchenko V, Brindza M, Chonde M, Palmore B, Eom R (2004) The vaporization rate of ice at temperatures near its melting point. J Chem Phys 121(23):11980–11992. doi:10.1063/1.1817820

    Article  Google Scholar 

  3. Chonde M, Brindza M, Sadtchenko V (2006) Glass transition in pure and doped amorphous solid water: an ultrafast microcalorimetry study. J Chem Phys 125(9):10. doi:10.1063/1.2338524

    Article  Google Scholar 

  4. Sadtchenko V, Lu HP, McCartney S (2007) Response to Comment on ‘Glass transition in pure and doped amorphous solid: an ultrafast microcalorimetry study’ J Chem Phys 125, 094501 (2006). J Chem Phys 127(15):2. doi:10.1063/1.2773730

    Article  Google Scholar 

  5. Jakobi R, Gmelin E, Ripka K (1993) High-precision adiabatic calorimetry and the specific heat of cyclopentane at low temperature. J Therm Anal 40(3):871–876. doi:10.1007/BF02546845

    Article  Google Scholar 

  6. Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T (1998) Calorimetric study of glassy and liquid toluene and ethylbenzene: Thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B 102(9):1605–1609. doi:10.1021/jp973439v

    Article  Google Scholar 

  7. Ihmels EC, Lemmon EW (2007) Experimental densities, vapor pressures, and critical point, and a fundamental equation of state for dimethyl ether. Fluid Phase Equilib 260(1):36–48. doi:10.1016/j.fluid.2006.09.016

    Article  Google Scholar 

  8. Counsell JF, Lee DA, Martin JF (1971) Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether. J Chem Soc A 0:313–316. doi:10.1039/J19710000313

    Article  Google Scholar 

  9. Aston JG, Kennedy RM, Schumann SC (1940) The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane. J Am Chem Soc 62(8):2059–2063. doi:10.1021/ja01865a042

    Article  Google Scholar 

  10. Hoffmann H, Vancea J, Jacob U (1985) Surface scattering of electrons in metals. Thin Solid Films 129(3–4):181–193. doi:10.1016/0040-6090(85)90045-8

    Article  Google Scholar 

  11. Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys Condens Matter 4(38):7627

    Article  Google Scholar 

  12. Bhattacharya D, Sadtchenko V (2014) Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene. J Chem Phys 141(9):094502. doi:10.1063/1.4893716

    Article  Google Scholar 

  13. Ramires MLV, de Castro CAN, Perkins RA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (2000) Reference data for the thermal conductivity of saturated liquid toluene over a wide range of temperatures. J Phys Chem Ref Data 29(2):133–139. doi:10.1063/1.556057

    Article  Google Scholar 

  14. Angell CA (2002) Calorimetric studies of the energy landscapes of glassformers by hyperquenching methods. J Therm Anal 69(3):785–794

    Article  Google Scholar 

  15. Dawson KJ, Kearns KL, Yu L, Steffen W, Ediger MD (2009) Physical vapor deposition as a route to hidden amorphous states. Proc Natl Acad Sci 106(36):15165–15170. doi:10.1073/pnas.0901469106

    Article  Google Scholar 

  16. Schroter K (2006) Characteristic length of glass transition heterogeneity from calorimetry. J Non-Cryst Solids 352(30-31):3249–3254. doi:10.1016/j.noncrysol.2006.05.024

    Article  Google Scholar 

  17. Mazinani SKS, Richert R (2012) Enthalpy recovery in glassy materials: heterogeneous versus homogenous models. J Chem Phys 136(17):174515. doi:10.1063/1.4712032

    Article  Google Scholar 

  18. Wang LM, Velikov V, Angell CA (2002) Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117(22):10184–10192. doi:10.1063/1.1517607

    Article  Google Scholar 

  19. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169(3):211–266

    Article  Google Scholar 

  20. Matyushov DV, Angell CA (2007) Gaussian excitations model for glass-former dynamics and thermodynamics. J Chem Phys 126(9):094501. doi:10.1063/1.2538712

    Article  Google Scholar 

  21. Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C (2013) In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 138(2):11. doi:10.1063/1.4773354

    Article  Google Scholar 

  22. Hinze G, Diezemann G, Sillescu H (1996) Deuteron spin diffusion and spin lattice relaxation in amorphous solids. J Chem Phys 104(2):430–433. doi:10.1063/1.470841

    Article  Google Scholar 

  23. Hinze G, Sillescu H (1996) H-2 nuclear magnetic resonance study of supercooled toluene: slow and fast processes above and below the glass transition. J Chem Phys 104(1):314–319. doi:10.1063/1.470902

    Article  Google Scholar 

  24. Hallbrucker A, Mayer E, Johari GP (1989) Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water - a comparison with hyperquenched glassy water. J Phys Chem 93(12):4986–4990

    Article  Google Scholar 

  25. Johari GP (1998) Liquid state of low-density pressure-amorphized ice above its T-g. J Phys Chem B 102(24):4711–4714

    Article  Google Scholar 

  26. Johari GP (1996) Water's character from dielectric relaxation above its T-g. J Chem Phys 105(16):7079–7082

    Article  Google Scholar 

  27. Drobyshev A, Aldiyarov A, Zhumagaliuly D, Kurnosov V, Tokmoldin N (2007) Thermally stimulated transformations in cryovacuum water ices. Low Temp Phys 33(4):355–361

    Article  Google Scholar 

  28. Smith RS, Dohnalek Z, Kimmel GA, Stevenson KP, Kay BD (2000) The self-diffusivity of amorphous solid water near 150 K. Chem Phys 258(2–3):291–305

    Article  Google Scholar 

  29. Souda R (2005) Kinetics of the glass-liquid transition of water. Chem Phys Lett 415(1–3):146–149. doi:10.1016/j.cplett.2005.08.126

    Article  Google Scholar 

  30. Souda R (2006) Evidence of deeply supercooled liquid water in interaction with LiCl. J Phys Chem B 110(30):14787–14791. doi:10.1021/jp061801c

    Article  Google Scholar 

  31. Souda R (2006) Substrate and surfactant effects on the glass-liquid transition of thin water films. J Phys Chem B 110(35):17524–17530. doi:10.1021/jp061831f

    Article  Google Scholar 

  32. Souda R (2008) The glass-liquid transition of water on hydrophobic surfaces. J Chem Phys 129(12):124707. doi:10.1063/1.2980041

    Article  Google Scholar 

  33. Amann-Winkel K, Gainaru C, Handle PH, Seidl M, Nelson H, Böhmer R, Loerting T (2013) Water’s second glass transition. Proc Natl Acad Sci 110(44):17720. doi:10.1073/pnas.1311718110

    Article  Google Scholar 

  34. Johari GP, Fleissner G, Hallbrucker A, Mayer E (1994) Thermodynamic continuity between glassy and normal water. J Phys Chem 98(17):4719–4725

    Article  Google Scholar 

  35. Speedy RJ, Debenedetti PG, Smith RS, Huang C, Kay BD (1996) The evaporation rate, free energy, and entropy of amorphous water at 150 K. J Chem Phys 105(1):240–244

    Article  Google Scholar 

  36. Angell CA (2004) Amorphous water. Annu Rev Phys Chem 55:559–583. doi:10.1146/annurev.physchem.55.091602.094156

    Article  Google Scholar 

  37. MacFarlane DR, Angell CA (1984) Glass transition for amorphous solid water. J Phys Chem 88(4):759–762. doi:10.1021/j150648a029

    Article  Google Scholar 

  38. Angell CA (2008) Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319(5863):582–587. doi:10.1126/science.1131939

    Article  Google Scholar 

  39. Giovambattista N, Angell CA, Sciortino F, Stanley HE (2004) Glass-transition temperature of water: a simulation study. Phys Rev Lett 93(4):047801. doi:10.1103/PhysRevLett.93.047801

    Article  Google Scholar 

  40. Chonde M, Brindza M, Sadtchenko V (2006) Glass transition in pure and doped amorphous solid water: an ultrafast microcalorimetry study. J Chem Phys 125(9):11980–11992. doi:10.1063/1.2338524

    Article  Google Scholar 

  41. McCartney SA, Sadtchenko V (2013) Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: Evidence for the existence of a unique vicinal phase. J Chem Phys 138(8):084501. doi:10.1063/1.4789629

    Article  Google Scholar 

  42. Bhattacharya D, Payne CN, Sadtchenko V (2011) Bulk and interfacial glass transitions of water. J Phys Chem A 115(23):5965–5972. doi:10.1021/jp110372t

    Article  Google Scholar 

  43. Minoguchi A, Richert R, Angell CA (2004) Dielectric studies deny existence of ultraviscous fragile water. Phys Rev Lett 93(21):215703. doi:10.1103/PhysRevLett.93.215703

    Article  Google Scholar 

  44. McClure SM, Barlow ET, Akin MC, Safarik DJ, Truskett TM, Mullins CB (2006) Transport in amorphous solid water films: implications for self-diffusivity. J Phys Chem B 110(36):17987–17997. doi:10.1021/jp063259y

    Article  Google Scholar 

  45. McClure SM, Safarik DJ, Truskett TM, Mullins CB (2006) Evidence that amorphous water below 160 K is not a fragile liquid. J Phys Chem B 110(23):11033–11036. doi:10.1021/jp0623286

    Article  Google Scholar 

  46. Nagoe A, Kanke Y, Oguni M (2010) Abrupt increase of T-g with dilution of methanol aqueous solutions within silica pores, as potentially reflecting development of a hydrogen-bond network inherent to the water molecule. J Phys Condens Matter 22(36):365105. doi:10.1088/0953-8984/22/36/365105

    Article  Google Scholar 

  47. Reinot T, Dang NC, Jankowiak R (2009) Hyperquenched glassy water and hyperquenched glassy ethanol probed by single molecule spectroscopy. J Phys Chem B 113(13):4303–4313. doi:10.1021/jp808843t

    Article  Google Scholar 

  48. Oguni M, Kanke Y, Nagoe A, Namba S (2011) Calorimetric study of water’s glass transition in nanoscale confinement, suggesting a value of 210 K for bulk water. J Phys Chem B 115(48):14023–14029. doi:10.1021/jp2034032

    Article  Google Scholar 

  49. Swenson J, Elamin K, Jansson H, Kittaka S (2013) Why is there no clear glass transition of confined water? Chem Phys 424:20–25. doi:10.1016/j.chemphys.2012.11.014

    Article  Google Scholar 

  50. Speedy RJ (1982) Stability limit conjection an interpretation of properties of water. J Phys Chem 86(6):982–991

    Article  Google Scholar 

  51. Bhat SN, Sharma A, Bhat SV (2005) Vitrification and glass transition of water: insights from spin probe ESR. Phys Rev Lett 95(23):235702. doi:10.1103/PhysRevLett.95.235702

    Article  Google Scholar 

  52. Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem 51:99–128. doi:10.1146/annurev.physchem.51.1.99

    Article  Google Scholar 

  53. Ueno K, Angell CA (2011) On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities. J Phys Chem B 115(48):13994–13999. doi:10.1021/jp111398r

    Article  Google Scholar 

  54. Gulbiten O, Mauro JC, Lucas P (2013) Relaxation of enthalpy fluctuations during sub-T-g annealing of glassy selenium. J Chem Phys 138(24):244504. doi:10.1063/1.4811488

    Article  Google Scholar 

  55. Kapko V, Zhao ZF, Matyushov DV, Angell CA (2013) "Ideal glassformers" vs "ideal glasses" Studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry. J Chem Phys 138(12):12A549. doi:10.1063/1.4794787

    Article  Google Scholar 

  56. Widmer-Cooper A, Harrowell P (2005) On the relationship between structure and dynamics in a supercooled liquid. J Phys Condens Matter 17(49):S4025–S4034. doi:10.1088/0953-8984/17/49/001

    Article  Google Scholar 

  57. Widmer-Cooper A, Harrowell P, Fynewever H (2004) How reproducible are dynamic heterogeneities in a supercooled liquid? Phys Rev Lett 93(13):135701. doi:10.1103/PhysRevLett.93.135701

    Article  Google Scholar 

  58. Bhattacharya D, Sadtchenko V (2015) Surface localized softening in rapidly heated nanoscale aggregates of amorphous solid water. J Chem Phys submitted

    Google Scholar 

  59. Bhattacharya D, Sadtchenko V (2015) Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences. J Chem Phys 142(16):164510. doi:10.1063/1.4918745

    Article  Google Scholar 

  60. Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon RJ, Ediger MD, Wu T, Yu L, Satija S (2007) Organic glasses with exceptional thermodynamic and kinetic stability. Science 315(5810):353–356. doi:10.1126/science.1135795

    Article  Google Scholar 

  61. Kearns KL, Swallen SF, Ediger MD, Wu T, Sun Y, Yu L (2008) Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition. J Phys Chem B 112(16):4934–4942. doi:10.1021/jp7113384

    Article  Google Scholar 

  62. Kearns KL, Ediger MD, Huth H, Schick C (2010) One micrometer length scale controls kinetic stability of low-energy glasses. J Phys Chem Lett 1(1):388–392. doi:10.1021/jz9002179

    Article  Google Scholar 

  63. Leon-Gutierrez E, Sepulveda A, Garcia G, Clavaguera-Mora MT, Rodriguez-Viejo J (2010) Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys Chem Chem Phys 12(44):14693–14698. doi:10.1039/c0cp00208a

    Article  Google Scholar 

  64. Chen Z, Richert R (2011) Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition. J Chem Phys 135(12):124515. doi:10.1063/1.3643332

    Article  Google Scholar 

  65. Singh S, de Pablo JJ (2011) A molecular view of vapor deposited glasses. J Chem Phys 134(19):194903. doi:10.1063/1.3586805

    Article  Google Scholar 

  66. Sun Y, Zhu L, Kearns KL, Ediger MD, Yu LA (2011) Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc Natl Acad Sci U S A 108(15):5990–5995. doi:10.1073/pnas.1017995108

    Article  Google Scholar 

  67. Ramos S, Oguni M, Ishii K, Nakayama H (2011) Character of devitrification, viewed from enthalpic paths, of the vapor-deposited ethylbenzene glasses. J Phys Chem B 115(49):14327–14332. doi:10.1021/jp203612s

    Article  Google Scholar 

  68. Zhu L, Brian CW, Swallen SF, Straus PT, Ediger MD, Yu L (2011) Surface self-diffusion of an organic glass. Phys Rev Lett 106(25):256103. doi:10.1103/PhysRevLett.106.256103

    Article  Google Scholar 

  69. Daley CR, Fakhraai Z, Ediger MD, Forrest JA (2012) Comparing surface and bulk flow of a molecular glass former. Soft Matter 8(7):2206–2212. doi:10.1039/c2sm06826e

    Article  Google Scholar 

  70. Dawson K, Kopff LA, Zhu L, McMahon RJ, Yu L, Richert R, Ediger MD (2012) Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers. J Chem Phys 136(9):094505. doi:10.1063/1.3686801

    Article  Google Scholar 

  71. Ediger MD, Harrowell P (2012) Perspective: supercooled liquids and glasses. J Chem Phys 137(8):080901–080914. doi:10.1063/1.4747326

    Article  Google Scholar 

  72. Guo Y, Morozov A, Schneider D, Chung JW, Zhang C, Waldmann M, Yao N, Fytas G, Arnold CB, Priestley RD (2012) Ultrastable nanostructured polymer glasses. Nat Mater 11(4):337–343. doi:10.1038/nmat3234

    Article  Google Scholar 

  73. Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C (2013) In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 138(2):024501. doi:10.1063/1.4773354

    Article  Google Scholar 

  74. Chen Z, Sepulveda A, Ediger MD, Richert R (2013) Dynamics of glass-forming liquids. XVI. Observation of ultrastable glass transformation via dielectric spectroscopy. J Chem Phys 138(12):12A519. doi:10.1063/1.4771695

    Article  Google Scholar 

  75. Douglass I, Harrowell P (2013) Can a stable glass be superheated? Modelling the kinetic stability of coated glassy films. J Chem Phys 138(12):12a516. doi:10.1063/1.4772480

    Article  Google Scholar 

  76. Lyubimov I, Ediger MD, de Pablo JJ (2013) Model vapor-deposited glasses: growth front and composition effects. J Chem Phys 139(14):144505. doi:10.1063/1.4823769

    Article  Google Scholar 

  77. Sepulveda A, Swallen SF, Ediger MD (2013) Manipulating the properties of stable organic glasses using kinetic facilitation. J Chem Phys 138(12):12A517. doi:10.1063/1.4772594

    Article  Google Scholar 

  78. Singh S, Ediger MD, de Pablo JJ (2013) Ultrastable glasses from in silico vapour deposition. Nat Mater 12(2):139–144. doi:10.1038/nmat3521

    Article  Google Scholar 

  79. Ishii K, Nakayama H (2014) Structural relaxation of vapor-deposited molecular glasses and supercooled liquids. Phys Chem Chem Phys 16(24):12073–12092. doi:10.1039/C4CP00458B

    Article  Google Scholar 

  80. Scott DW, Guthrie GB, Messerly JF, Todd SS, Berg WT, Hossenlopp IA, McCullough JP (1962) Toluene: thermodynamic properties, molecular vibrations, and internal rotation. J Phys Chem 66(5):911–914. doi:10.1021/j100811a038

    Article  Google Scholar 

  81. Dalal SS, Fakhraai Z, Ediger MD (2013) High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses. J Phys Chem B 117(49):15415–15425. doi:10.1021/jp405005n

    Article  Google Scholar 

  82. Fakhraai Z, Still T, Fytas G, Ediger MD (2011) Structural variations of an organic glassformer vapor-deposited onto a temperature gradient stage. J Phys Chem Lett 2(5):423–427. doi:10.1021/jz101723d

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Award 1012692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Sadtchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhattacharya, D., Cubeta, U., Sadtchenko, V. (2016). Fast Scanning Calorimetry–Fast Thermal Desorption Technique: The Thin Wire Approach. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_4

Download citation

Publish with us

Policies and ethics