Skip to main content

Quasi-adiabatic, Membrane-Based, Highly Sensitive Fast Scanning Nanocalorimetry

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

We describe the basics of membrane-based fast scanning calorimetry performed under quasi-adiabatic conditions, i.e., with negligible heat losses during the calorimetric scan. The technique achieves extremely high energy sensitivity with monolayer resolution and is ideally suited to investigate surface phenomena as well as transitions in organic and inorganic ultrathin films. In this chapter, we review the several types of membrane-based microcalorimeters currently in use and the principles of the technique, both from the point of view of the main instrumentation and the derivation of the heat capacity of the sample. We also describe some relevant examples of application to highlight the potentiality of the technique.

This chapter deals with measurements that are carried with membrane-based nanocalorimeters at fast speed (104–106 K/s) and in high vacuum, so the heat capacity can be directly computed from the input power after some minor corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höhne GWH, Hemminger W, Flammersheim H-J (2003) Differential scanning calorimetry - an introduction for practitioners, 2nd edn. Springer, Berlin. doi:10.1007/978-3-662-06710-9

    Book  Google Scholar 

  2. Schnelle W, Gmelin E (1995) High-resolution adiabatic scanning calorimeter for small samples. Thermochim Acta 269–270:27–32. doi:10.1016/0040-6031(94)02666-1

    Article  Google Scholar 

  3. Worthing AG (1918) Atomic heats of tungsten and of carbon at incandescent temperatures. Phys Rev 12:199. doi:10.1103/PhysRev.12.199

    Article  Google Scholar 

  4. Rasor NS, McClelland JD (1960) Thermal property measurements at very high temperatures. Rev Sci Instrum 31:595. doi:10.1063/1.1931263

    Article  Google Scholar 

  5. Wire MS, Fisk Z, Webb GW (1985) High-temperature specific heat by a pulse-heating method. Rev Sci Instrum 56:1223. doi:10.1063/1.1137980

    Article  Google Scholar 

  6. Fröchte B, Khan Y, Kneller E (1990) A simple high speed calorimeter. Rev Sci Instrum 61:1954–1957. doi:10.1063/1.1141401

    Article  Google Scholar 

  7. Nölting J (1985) Scanning calorimetry with adiabatic or controlled diabatic surroundings. Thermochim Acta 94:1–15. doi:10.1016/0040-6031(85)85241-2

    Article  Google Scholar 

  8. Spaepen F, Thompson CV (1989) Calorimetric studies of reactions in thin films and multilayers. Appl Surf Sci 38:1–12. doi:10.1016/0169-4332(89)90513-8

    Article  Google Scholar 

  9. Moseley SH, Mather JC, McCammon D (1984) Thermal detectors as x-ray spectrometers. J Appl Phys 56:1257–1262. doi:10.1063/1.334129

    Article  Google Scholar 

  10. McCammon D, Moseley SH, Mather JC, Mushotzky RF (1984) Experimental tests of a single-photon calorimeter for x-ray spectroscopy. J Appl Phys 56:1263–1266. doi:10.1063/1.334130

    Article  Google Scholar 

  11. Graebner JE (1989) Modulated-bath calorimetry. Rev Sci Instrum 60:1123. doi:10.1063/1.1141068

    Article  Google Scholar 

  12. Geer R, Stoebe T, Pitchford T, Huang CC (1991) An ac calorimeter for measuring heat capacity of free-standing liquid-crystal films. Rev Sci Instrum 62:415. doi:10.1063/1.1142136

    Article  Google Scholar 

  13. Nuscheler F (1989) An investigation of the dynamic behaviour of a silicon microcalorimeter. Sensors Actuators 17:593–597. doi:10.1016/0250-6874(89)80050-2

    Article  Google Scholar 

  14. Denlinger DW, Abarra ENE, Allen K et al (1994) Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K. Rev Sci Instrum 65:946–959

    Article  Google Scholar 

  15. Lai S, Ramanath G, Allen L et al (1995) High speed (104° C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Appl Phys Lett 67:1229–1231

    Article  Google Scholar 

  16. Fominaya F, Fournier T, Gandit P, Chaussy J (1997) Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals. Rev Sci Instrum 68:4191. doi:10.1063/1.1148366

    Article  Google Scholar 

  17. Jensen KF (2001) Microreaction engineering — is small better? Chem Eng Sci 56:293–303. doi:10.1016/S0009-2509(00)00230-X

    Article  Google Scholar 

  18. Zhang M, Efremov MY, Olson EA et al (2002) Real-time heat capacity measurement during thin-film deposition by scanning nanocalorimetry. Appl Phys Lett 81:3801. doi:10.1063/1.1520714

    Article  Google Scholar 

  19. Efremov MYM, Schiettekatte F, Zhang M et al (2000) Discrete periodic melting point observations for nanostructure ensembles. Phys Rev Lett 85:3560–3563. doi:10.1103/PhysRevLett.85.3560

    Article  Google Scholar 

  20. Zhang M, Efremov M, Schiettekatte F et al (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62:10548–10557. doi:10.1103/PhysRevB.62.10548

    Article  Google Scholar 

  21. Kwan AT, Efremov MY, Olson EA et al (2001) Nanoscale calorimetry of isolated polyethylene single crystals. J Polym Sci Part B Polym Phys 39:1237–1245. doi:10.1002/polb.1097

    Article  Google Scholar 

  22. Lopeandía AF, Leon-Gutierrez E, Garcia G et al (2006) Nanocalorimetric high-temperature characterization of ultrathin films of a-Ge. Mater Sci Semicond Process 9:806–811. doi:10.1016/j.mssp.2006.08.078

    Article  Google Scholar 

  23. Mercure J-F, Karmouch R, Anahory Y et al (2003) Radiation damage in silicon studied in situ by nanocalorimetry. Phys B Condens Matter 340–342:622–625. doi:10.1016/j.physb.2003.09.243

    Article  Google Scholar 

  24. Yi F, LaVan DA (2013) Electrospray-assisted nanocalorimetry measurements. Thermochim Acta 569:1–7. doi:10.1016/j.tca.2013.06.015

    Article  Google Scholar 

  25. Efremov MYMY, Warren JTJTJ, Olson EA et al (2002) Thin-film differential scanning calorimetry: a new probe for assignment of the glass transition of ultrathin polymer films. Macromolecules 35:1–3. doi:10.1021/ma0116811

    Article  Google Scholar 

  26. Efremov M, Olson E, Zhang M et al (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett 91:085703. doi:10.1103/PhysRevLett.91.085703

    Article  Google Scholar 

  27. Efremov MY, Olson EA, Zhang M, Allen LH (2003) Glass transition of thin films of poly(2-vinyl pyridine) and poly(methyl methacrylate): nanocalorimetry measurements. Thermochim Acta 403:37–41. doi:10.1016/S0040-6031(03)00122-9

    Article  Google Scholar 

  28. León-Gutierrez E, Garcia G, Lopeandía AF et al (2008) In situ nanocalorimetry of thin glassy organic films. J Chem Phys 129:181101. doi:10.1063/1.3009766

    Article  Google Scholar 

  29. Leon-Gutierrez E, Garcia G, Lopeandia AF et al (2010) Size effects and extraordinary stability of ultrathin vapor deposited glassy films of toluene. J Phys Chem Lett 1:341–345. doi:10.1021/jz900178u

    Article  Google Scholar 

  30. Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J et al (2014) Evaluation of growth front velocity in ultrastable glasses of indomethacin over a wide temperature interval. J Phys Chem B 118:10795–10801. doi:10.1021/jp506782d

    Article  Google Scholar 

  31. Lopeandía AF, Pi F, Rodríguez-Viejo J (2008) Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel. Appl Phys Lett 92:122503. doi:10.1063/1.2901166

    Article  Google Scholar 

  32. Molina-Ruiz M, Lopeandía A, Pi F et al (2011) Evidence of finite-size effect on the Néel temperature in ultrathin layers of CoO nanograins. Phys Rev B 83:140407(R)

    Article  Google Scholar 

  33. Anahory Y, Guihard M, Smeets D et al (2010) Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors. Thermochim Acta 510:126–136. doi:10.1016/j.tca.2010.07.006

    Article  Google Scholar 

  34. Béland LK, Anahory Y, Smeets D et al (2013) Replenish and relax: explaining logarithmic annealing in ion-implanted c-Si. Phys Rev Lett 111:105502. doi:10.1103/PhysRevLett.111.105502

    Article  Google Scholar 

  35. Swaminathan P, Grapes MD, Woll K et al (2013) Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. J Appl Phys 113:143509. doi:10.1063/1.4799628

    Article  Google Scholar 

  36. Cook LP, Cavicchi RE, Bassim N et al (2009) Enhanced mass transport in ultrarapidly heated Ni/Si thin-film multilayers. J Appl Phys 106:104909. doi:10.1063/1.3254225

    Article  Google Scholar 

  37. Kummamuru RK, De La Rama L, Hu L et al (2009) Measurement of heat capacity and enthalpy of formation of nickel silicide using nanocalorimetry. Appl Phys Lett 95:181911. doi:10.1063/1.3255009

    Article  Google Scholar 

  38. Molina-Ruiz M, Lopeandía AF, González-Silveira M et al (2013) Formation of Pd2Si on single-crystalline Si (100) at ultrafast heating rates: an in-situ analysis by nanocalorimetry. Appl Phys Lett 102:143111. doi:10.1063/1.4800934

    Article  Google Scholar 

  39. Molina-Ruiz M, Lopeandía AF, Gonzalez-Silveira M et al (2014) Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude. Appl Phys Lett 105:013113. doi:10.1063/1.4890106

    Article  Google Scholar 

  40. Lopeandía AF, Rodríguez-Viejo J (2007) Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film. Thermochim Acta 461:82–87. doi:10.1016/j.tca.2007.04.010

    Article  Google Scholar 

  41. Zhang M, Wen JG, Efremov MY et al (2012) Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry. J Appl Phys 111:093516. doi:10.1063/1.4712342

    Article  Google Scholar 

  42. Sekimoto M, Yoshihara H, Ohkubo T, Saitoh Y (1982) Silicon Nitride Single-Layer X-Ray Mask. J Vac Sci Technol 21:1017. doi:10.116/1.571854

    Article  Google Scholar 

  43. Mastrangelo CH, Tai Y-C, Muller RS (1990) Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films. Sensors Actuators A Phys 23:856–860. doi:10.1016/0924-4247(90)87046-L

    Article  Google Scholar 

  44. Zhang X, Grigoropoulos C (1995) Thermal conductivity and diffusivity of free‐standing silicon nitride thin films. Rev Sci Instrum 66:1115–1120

    Article  Google Scholar 

  45. Lopeandia AF, Leon-Gutierrez E, Rodriguez-Viejo J et al (2007) Design issues involved in the development of a membrane-based high-temperature nanocalorimeter. Microelectron Eng 84:1288–1291. doi:10.1016/j.mee.2007.01.054

    Article  Google Scholar 

  46. Lopeandia AF, Rodriguez-Viejo J, Chacon M et al (2006) Heat transfer in symmetric U-shaped microreactors for thin film calorimetry. J Micromech Microeng 16:965–971. doi:10.1088/0960-1317/16/5/013

    Article  Google Scholar 

  47. Xiao K, Gregoire JM, McCluskey PJ, Vlassak JJ (2012) A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials. Rev Sci Instrum 83:114901. doi:10.1063/1.4763571

    Article  Google Scholar 

  48. Olson EA, Efremov MY, Allen LH (2003) The design and operation of a mems differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12:355–364. doi:10.1109/JMEMS.2003.811755

    Article  Google Scholar 

  49. Zhang M, Olson EA, Twesten RD et al (2011) In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res 20:1802–1807. doi:10.1557/JMR.2005.0225

    Article  Google Scholar 

  50. Firebaugh SL, Jensen KF, Schmidt MA (1998) Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. J Microelectromech Syst 7:128–135. doi:10.1109/84.661395

    Article  Google Scholar 

  51. Molina-Ruiz M (2014) Nanocalorimetric studies of size effects in magnetic oxides and formation kinetics in silicides. PhD thesis. Univ. Autònoma Barcelona

    Google Scholar 

  52. Efremov MY, Olson EA, Zhang M et al (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179. doi:10.1063/1.1633000

    Article  Google Scholar 

  53. Lopeandia AF (2007) Development of Membrane-based Calorimeters to Measure Phase Transitions at the Nanoscale. PhD thesis. Univ. Autònoma Barcelona

    Google Scholar 

  54. Van Dusen MS (1925) Platinum-resistance thermometry at low temperatures 1. J Am Chem Soc 47:326–332. doi:10.1021/ja01679a007

    Article  Google Scholar 

  55. Riddle JL, Furukawa GT, Plumb HH (1973) Platinum resistance thermometer, NBS Mono. National Bureau of Standards, Washington DC

    Google Scholar 

  56. Efremov MY, Olson EA, Zhang M et al (2004) Thin-film differential scanning nanocalorimetry: heat capacity analysis. Thermochim Acta 412:13–23. doi:10.1016/j.tca.2003.08.019

    Article  Google Scholar 

  57. Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264. doi:10.1016/j.sna.2007.11.006

    Article  Google Scholar 

  58. Cao G, McCall S, Shepard M et al (1997) Thermal, magnetic, and transport properties of single-crystal Sr1-xCaxRuO3 (0~x~1.0). Phys Rev B 56:321–329. doi:10.1103/PhysRevB.56.321

    Article  Google Scholar 

  59. Ghivelder L, Abrego Castillo I, Alford NM et al (1998) Specific heat of La1−xCaxMnO3−δ. J Magn Magn Mater 189:274–282. doi:10.1016/S0304-8853(98)00254-6

    Article  Google Scholar 

  60. Cullity B, Graham C (2009) Introduction to magnetic materials, IEEE PRESS. Mater Today. doi: 10.1016/S1369-7021(09)70091-4

    Google Scholar 

  61. Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42. doi:10.1088/0022-3727/35/6/201

    Article  Google Scholar 

  62. Nogués J, Sort J, Langlais V et al (2005) Exchange bias in nanostructures. Phys Rep 422:65–117. doi:10.1016/j.physrep.2005.08.004

    Article  Google Scholar 

  63. Zhang R, Willis RF (2001) Thickness-dependent curie temperatures of ultrathin magnetic films: effect of the range of spin-spin interactions. Phys Rev Lett 86:2665–2668. doi:10.1103/PhysRevLett.86.2665

    Article  Google Scholar 

  64. Cui XF, Zhao M, Jiang Q (2005) Curie transition temperature of ferromagnetic low-dimensional metals. Thin Solid Films 472:328–333. doi:10.1016/j.tsf.2004.07.063

    Article  Google Scholar 

  65. Li Y, Baberschke K (1992) Dimensional crossover in ultrathin Ni(111) films on W(110). Phys Rev Lett 68:1208–1211. doi:10.1103/PhysRevLett.68.1208

    Article  Google Scholar 

  66. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232. doi:10.1016/S0304-8853(98)00266-2

    Article  Google Scholar 

  67. Petti D, Albisetti E, Reichlová H et al (2013) Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl Phys Lett 102:192404. doi:10.1063/1.4804429

    Article  Google Scholar 

  68. Hoummada K, Portavoce A, Perrin-Pellegrino C et al (2008) Differential scanning calorimetry measurements of kinetic factors involved in salicide process. Appl Phys Lett 92:109–112. doi:10.1063/1.2905293

    Article  Google Scholar 

  69. Roorda S, Sinke W, Poate J et al (1991) Structural relaxation and defect annihilation in pure amorphous silicon. Phys Rev B 44:3702–3725. doi:10.1103/PhysRevB.44.3702

    Article  Google Scholar 

  70. Mercure JF, Karmouch R, Anahory Y et al (2005) Dependence of the structural relaxation of amorphous silicon on implantation temperature. Phys Rev B 71:134205. doi:10.1103/PhysRevB.71.134205

    Article  Google Scholar 

  71. Karmouch R, Anahory Y, Mercure J-F et al (2007) Damage evolution in low-energy ion implanted silicon. Phys Rev B 75:075304. doi:10.1103/PhysRevB.75.075304

    Article  Google Scholar 

  72. Angell CA (2011) Glassy, Amorphous and Nano-Crystalline Materials. doi: 10.1007/978-90-481-2882-2

    Google Scholar 

  73. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461–R524. doi:10.1088/0953-8984/17/15/R01

    Article  Google Scholar 

  74. Schick C (2010) Glass transition under confinement-what can be learned from calorimetry. Eur Phys J Spec Top 189:3–36. doi:10.1140/epjst/e2010-01307-y

    Article  Google Scholar 

  75. Fakhraai Z, Forrest JA (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95:025701. doi:10.1103/PhysRevLett.95.025701

    Article  Google Scholar 

  76. Alba-Simionesco C, Dosseh G, Dumont E et al (2003) Confinement of molecular liquids: consequences on thermodynamic, static and dynamical properties of benzene and toluene. Eur Phys J E 12:19–28. doi:10.1140/epje/i2003-10055-1

    Article  Google Scholar 

  77. Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498. doi:10.1111/j.1151-2916.1971.tb12186.x

    Article  Google Scholar 

  78. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16. doi:10.1111/j.1151-2916.1976.tb09376.x

    Article  Google Scholar 

  79. DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:16–21. doi:10.1111/j.1151-2916.1976.tb09377.x

    Article  Google Scholar 

  80. Sepúlveda A, Leon-Gutierrez E, Gonzalez-Silveira M et al (2012) Anomalous transformation of vapor-deposited highly stable glasses of toluene into mixed glassy states by annealing above T g. J Phys Chem Lett 3:919–923. doi:10.1021/jz201681v

    Article  Google Scholar 

  81. Sepúlveda A, Leon-Gutierrez E, Gonzalez-Silveira M et al (2011) Accelerated aging in ultrathin films of a molecular glass former. Phys Rev Lett 107:025901. doi:10.1103/PhysRevLett.107.025901

    Article  Google Scholar 

  82. Leon-Gutierrez E, Sepúlveda A, Garcia G et al (2010) Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys Chem Chem Phys 12:14693–14698. doi:10.1039/c0cp00208a

    Article  Google Scholar 

  83. Swallen SF, Kearns KL, Mapes MK et al (2007) Organic glasses with exceptional thermodynamic and kinetic stability. Science 315:353–356. doi:10.1126/science.1135795

    Article  Google Scholar 

  84. Pérez-Castañeda T, Jiménez-Riobóo RJ, Ramos MA (2014) Two-level systems and boson peak remain stable in 110-million-year-old amber glass. Phys Rev Lett 112:165901. doi:10.1103/PhysRevLett.112.165901

    Article  Google Scholar 

  85. Kearns KL, Still T, Fytas G, Ediger MD (2010) High-modulus organic glasses prepared by physical vapor deposition. Adv Mater 22:39–42. doi:10.1002/adma.200901673

    Article  Google Scholar 

  86. Pogna EAA, Rodríguez-Tinoco C, Cerullo G et al (2015) Probing equilibrium glass flow up to exapoise viscosities. Proc Natl Acad Sci 112:2331–2336. doi:10.1073/pnas.1423435112

    Article  Google Scholar 

  87. Dalal SS, Ediger MD (2012) Molecular orientation in stable glasses of indomethacin. J Phys Chem Lett 3:1229–1233. doi:10.1021/jz3003266

    Article  Google Scholar 

  88. Pérez-Castañeda T, Rodríguez-Tinoco C, Rodríguez-Viejo J, Ramos MA (2014) Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proc Natl Acad Sci U S A 111:11275–11280. doi:10.1073/pnas.1405545111

    Article  Google Scholar 

  89. Kearns KL, Ediger MD, Huth H, Schick C (2010) One micrometer length scale controls kinetic stability of low-energy glasses. J Phys Chem Lett 1:388–392. doi:10.1021/jz9002179

    Article  Google Scholar 

  90. Swallen SF, Windsor K, McMahon RJ et al (2010) Transformation of stable glasses into supercooled liquids: growth fronts and anomalously fast liquid diffusion. J Phys Chem B 114:2635–2643. doi:10.1021/jp9107359

    Article  Google Scholar 

  91. Dawson KJ, Zhu L, Yu L, Ediger MD (2011) Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses. J Phys Chem B 115:455–463. doi:10.1021/jp1092916

    Article  Google Scholar 

  92. Chen Z, Sepúlveda A, Ediger MD, Richert R (2013) Dynamics of glass-forming liquids XVI Observation of ultrastable glass transformation via dielectric spectroscopy. J Chem Phys 138:12A519. doi:10.1063/1.4771695

    Google Scholar 

  93. Bhattacharya D, Sadtchenko V (2014) Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene. J Chem Phys 141:094502. doi:10.1063/1.4893716

    Article  Google Scholar 

  94. Wojnarowska Z, Adrjanowicz K, Wlodarczyk P et al (2009) Broadband dielectric relaxation study at ambient and elevated pressure of molecular dynamics of pharmaceutical: indomethacin. J Phys Chem B 113:12536–12545. doi:10.1021/jp905162r

    Article  Google Scholar 

  95. Sepúlveda A, Swallen SF, Kopff LA et al (2012) Stable glasses of indomethacin and α, α, β-tris- naphthylbenzene transform into ordinary supercooled liquids. J Chem Phys 137:204508. doi:10.1063/1.4768168

    Article  Google Scholar 

  96. Hsiao T-K, Chang H-K, Liou S-C et al (2013) Observation of room-temperature ballistic thermal conduction persisting over 8.3 mu m SiGe nanowires. Nat Nanotechnol 8:534–538. doi:10.1038/nnano.2013.121

    Article  Google Scholar 

  97. Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J et al (2015) Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy. Phys Chem Chem Phys 17:31195–31201. doi:10.1039/c5cp04692k

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to former PhD students, postdocs, and research staff at GNaM/UAB for their contribution to part of the work presented here. Financial support is granted by MINECO under grant MAT2013-40896-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Lopeandía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Viejo, J., Lopeandía, A.F. (2016). Quasi-adiabatic, Membrane-Based, Highly Sensitive Fast Scanning Nanocalorimetry. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_3

Download citation

Publish with us

Policies and ethics