Skip to main content

Kinetic Studies of Melting, Crystallization, and Glass Formation

  • Chapter
  • First Online:
Fast Scanning Calorimetry
  • 2112 Accesses

Abstract

Fast scanning calorimetry (FSC) offers new capabilities to explore previously inaccessible domains of reaction kinetics due to the expanded heating and cooling rates compared to conventional calorimetry methods. With this capability it is now possible to explore ranges of alloy metastability and to examine rapid kinetic reactions such as melting and the competition between crystallization and glass formation. These capabilities are demonstrated for the melting of phases in Pb-Bi alloys, the analysis of crystallization kinetics in a chalcogenide phase change memory alloy, the glass-to-liquid transition and crystallization of ultrastable nanoglasses, and the investigation of vitrification in a difficult glass forming metallic alloy and organic liquids that can be used to expand the accessible temperature range for the study of crystallization reactions. These areas offer many opportunities for the application of FSC to provide a new insight into the kinetics of metastable phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCluskey PJ, Vlassak JJ (2011) Glass transition and crystallization of amorphous Ni–Ti–Zr thin films by combinatorial nano-calorimetry. Scripta Mater 64:264–267

    Article  Google Scholar 

  2. Perepezko JH (2001) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford

    Google Scholar 

  3. Woodruff DP, Forty AJ (1967) A pre-melting phenomenon in sodium—potassium alloys. Philos Mag 15:985–993

    Article  Google Scholar 

  4. Perepezko JH, Smith JS (1981) Glass formation and crystallization in highly undercooled Te-Cu alloys. J Non-Cryst Solids 44:65–83

    Article  Google Scholar 

  5. Perepezko JH, Glendenning TW, Wang J-Q (2015) Nanocalorimetry measurements of metastable states. Thermochim Acta 603:24–28

    Article  Google Scholar 

  6. Christian JW (1965) The theory of transformation in metals and alloys. Pergamon Press, New York

    Google Scholar 

  7. Stock KD, Menzel E (1976) Surface melting on spherically shaped copper crystals. Surf Sci 61:272–274

    Article  Google Scholar 

  8. Young RMK, Clyne TW (1989) Intra-crystalline liquation as a result of solute supersaturation in metallic slurries. Acta Metall 37:663–674

    Article  Google Scholar 

  9. Verhoeven JD, Gibson ED (1971) Interface stability of the melting solid–liquid interface: II. Sn-Bi alloys. J Cryst Growth 11:39–49

    Article  Google Scholar 

  10. (1983) Smithells Metals Reference Book, 6th edn., Butterworths, London

    Google Scholar 

  11. Yang YGB, Zou C, Zhai Q, Abyzov A, Zhuravlev E, Schmelzer J, Schick C (2011) Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl Phys A 104:189–196

    Article  Google Scholar 

  12. Powell THR, Worley B (1998) Calculating phase diagrams involving solid solution via non-linear equations, with examples using Thermocalc. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  13. Redaelli A, Pirovano A, Benvenuti A, Lacaita AL (2008) Threshold switching and phase transition numerical models for phase change memory simulations. J Appl Phys 103:111101

    Article  Google Scholar 

  14. Kalb JA, Wen CY, Spaepen F, Dieker H, Wuttig M (2005) Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J Appl Phys 98:054902

    Article  Google Scholar 

  15. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832

    Article  Google Scholar 

  16. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935

    Article  Google Scholar 

  17. Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709

    Article  Google Scholar 

  18. Nascimento MLF, Zanotto ED (2010) Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J Chem Phys 133:174701

    Article  Google Scholar 

  19. Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709

    Article  Google Scholar 

  20. Weidenhof V, Friedrich I, Ziegler S, Wuttig M (2001) Laser induced crystallization of amorphous Ge2Sb2Te5 films. J Appl Phys 89:3168–3176

    Article  Google Scholar 

  21. Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE (2012) Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater 11:279–283

    Article  Google Scholar 

  22. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  Google Scholar 

  23. Park J, Kim MR, Choi WS, Seo H, Yeon C (1999) Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior. Jpn J Appl Phys 38:4775–4779

    Article  Google Scholar 

  24. Sestak J, Holba P, Zivkovic Z (2014) Doubts on Kissinger's method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of a Dta Peak. J Min Metall B 50:77–81

    Article  Google Scholar 

  25. Orava J, Greer AL (2015) Kissinger method applied to the crystallization of glass-forming liquids: regimes revealed by ultra-fast-heating calorimetry. Thermochim Acta 603:63–68

    Article  Google Scholar 

  26. Kelton KF (1997) Analysis of crystallization kinetics. Mater Sci Eng A 226–228:142–150

    Article  Google Scholar 

  27. Thompson CV, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 27:1855–1859

    Article  Google Scholar 

  28. Cohen MH, Grest GS (1979) Liquid-glass transition, a free-volume approach. Phys Rev B 20:1077–1098

    Article  Google Scholar 

  29. Yang Z, Fujii Y, Lee FK, Lam C-H, Tsui OKC (2010) Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328:1676–1679

    Article  Google Scholar 

  30. Fakhraai Z, Forrest JA (2008) Measuring the surface dynamics of glassy polymers. Science 319:600–604

    Article  Google Scholar 

  31. Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon RJ, Ediger MD, Wu T, Yu L, Satija S (2007) Science 315:353

    Article  Google Scholar 

  32. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309:456–459

    Article  Google Scholar 

  33. Leon-Gutierrez E, Sepulveda A, Garcia G, Clavaguera-Mora MT, Rodriguez-Viejo J (2010) Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys Chem Chem Phys 12:14693–14698

    Article  Google Scholar 

  34. Ramos SLLM, Oguni M, Ishii K, Nakayama H (2011) Character of devitrification, viewed from enthalpic paths, of the vapor-deposited ethylbenzene glasses. J Phys Chem B 115:14327–14332

    Article  Google Scholar 

  35. Guo YL, Morozov A, Schneider D, Chung J, Zhang C, Waldmann M, Yao N, Fytas G, Arnold CB, Priestley RD (2012) Ultrastable nanostructured polymer glasses. Nat Mater 11:337–343

    Article  Google Scholar 

  36. Ediger MD, Yu L (2012) Polymer glasses: from gas to nanoglobular glass. Nat Mater 11:267–268

    Article  Google Scholar 

  37. Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702

    Article  Google Scholar 

  38. Ma D, Stoica AD, Wang XL (2008) Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater 8:30–34

    Article  Google Scholar 

  39. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425

    Article  Google Scholar 

  40. Wang JQ, Wang WH, Liu YH, Bai HY (2011) Characterization of activation energy for flow in metallic glasses. Phys Rev B 83:012201

    Article  Google Scholar 

  41. Ke HB, Wen P, Zhao DQ, Wang WH (2010) Correlation between dynamic flow and thermodynamic glass transition in metallic glasses. Appl Phys Lett 96:251902

    Article  Google Scholar 

  42. Ghafari M, Hahn H, Gleiter H, Sakurai Y, Itou M, Kamali S (2012) Evidence of itinerant magnetism in a metallic nanoglass. Appl Phys Lett 101:243104

    Article  Google Scholar 

  43. Witte R, Feng T, Fang JX, Fischer A, Ghafari M, Kruk R, Brand RA, Wang D, Hahn H, Gleiter H (2013) Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl Phys Lett 103:073106

    Article  Google Scholar 

  44. Chen N, Frank R, Asao N, Louzguine-Luzgin DV, Sharma P, Wang JQ, Xie GQ, Ishikawa Y, Hatakeyama N, Lin YC, Esashi M, Yamamoto Y, Inoue A (2011) Formation and properties of Au-based nanograined metallic glasses. Acta Mater 59:6433–6440

    Article  Google Scholar 

  45. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13

    Article  Google Scholar 

  46. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity. Thermochim Acta 505:14–21

    Article  Google Scholar 

  47. Wang JQ, Chen N, Liu P, Wang Z, Louzguine-Luzgin DV, Chen MW, Perepezko JH (2014) The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater 79:30–36

    Article  Google Scholar 

  48. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415

    Article  Google Scholar 

  49. Whitaker KR, Scifo DJ, Ediger MD, Ahrenberg M, Schick C (2013) Highly stable glasses ofcis-decalin andcis/trans-decalin mixtures. J Phys Chem B 117:12724–12733

    Article  Google Scholar 

  50. Beysens D, Knobler CM, Schaffar H (1990) Scaling in the growth of aggregates on a surface. Phys Rev B 41:9814–9818

    Article  Google Scholar 

  51. Beysens D, Knobler CM (1986) Growth of breath figures. Phys Rev Lett 57:1433–1436

    Article  Google Scholar 

  52. Shirakawa H, Komiyama H (1999) Migration-coalescence of nanoparticles during deposition of Au, Ag, Cu, and GaAs on amorphous SiO2. J Nanoparticle Res 1:17–30

    Article  Google Scholar 

  53. Srinivasarao M, Collings D, Philips A, Patel S (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292:79–83

    Article  Google Scholar 

  54. Gleiter H, Schimmel T, Hahn H (2014) Nanostructured solids – from nano-glasses to quantum transistors. Nano Today 9:17–68

    Article  Google Scholar 

  55. Keddie JL, Jones RAL, Cory RA (1994) Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss 98:219–230

    Article  Google Scholar 

  56. Aji AHDPB, Zhu F, Liu P, Reddy KM, Song S, Liu YH, Fujita T, Kohara S and Chen MW (2013) Ultrastrong and ultrastable metallic glass. ArXiv:1306.1575

    Google Scholar 

  57. Yu H-B, Luo Y, Samwer K (2013) Ultrastable metallic glass. Adv Mater 25:5904–5908

    Article  Google Scholar 

  58. Perepezko JH, Santhaweesuk C, Wang JQ, Imhoff SD (2014) Kinetic competition during glass formation. J Alloys Compd 615:S192–S197

    Article  Google Scholar 

  59. Fecht HJ (1991) Free-energy functions of undercooled liquid glass-forming Au-Pb-Sb alloys. Mater Sci Eng 133:443–447

    Article  Google Scholar 

  60. Perepezko JH, Hildal K (2006) Analysis of solidification microstructures during wedge-casting. Philos Mag 86:3681–3701

    Article  Google Scholar 

  61. Mattei C, Molgo J, Marquais M, Vernoux JP, Benoit E (1999) Hyperosmolar D-mannitol reverses the increased membrane excitability and the nodal swelling caused by Caribbean ciguatoxin-1 in single frog myelinated axons. Brain Res 847:50–58

    Article  Google Scholar 

  62. Desesso JM, Scialli AR, Goeringer GC (1994) D-mannitol, a specific hydroxyl free-radical scavenger, reduces the developmental toxicity of hydroxyurea in rabbits. Teratology 49:248–259

    Article  Google Scholar 

  63. Wang Q, Morris ME (2008) Synergistic effect of L-lactate and D-mannitol on gamma-hydroxybutyrate toxicokinetics and toxicodynamics. Drug Metab Rev 40:165–166

    Google Scholar 

  64. Mohsin F, Mansoor MS, Ahmad M, Saeed S, Khawar A, Ahmad SUD (2008) Comparison of stabilizers, Myo-inositol and D-mannitol for Tc-99m-DMSA. J Chem Soc Pakistan 30:907–912, III

    Google Scholar 

  65. Yoshinari T, Forbes RT, York P, Kawashima Y (2003) Crystallisation of amorphous mannitol is retarded using boric acid. Int J Pharm 258:109–120

    Article  Google Scholar 

  66. Jamal MA, Rashad M, Khosa MK, Bhatti IA, Zia KM (2014) Solution behaviour and sweetness response of D-Mannitol at different temperatures. Food Chem 153:140–144

    Article  Google Scholar 

  67. Hanieh H, Sakaguchi E (2009) Effect of D-mannitol on feed digestion and cecotrophic system in rabbits. Anim Sci J 80:157–162

    Article  Google Scholar 

  68. Gil A, Barreneche C, Moreno P, Sole C, Fernandez AI, Cabeza LF (2013) Thermal behaviour of D-mannitol when used as PCM: comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Appl Energ 111:1107–1113

    Article  Google Scholar 

  69. Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27–42

    Article  Google Scholar 

  70. Hancock BC, Zograf G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  Google Scholar 

  71. Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    Article  Google Scholar 

  72. Ye P, Byron T (2008) Characterization of D-mannitol by thermal analysis, FTIR, and Raman spectroscopy. Am Lab 40:24–27

    Google Scholar 

  73. Yu L, Mishra DS, Rigsbee DR (1998) Determination of the glass properties of D-mannitol using sorbitol as an impurity. J Pharm Sci 87:774–777

    Article  Google Scholar 

  74. Graves JA, Perepezko JH (1986) Undercooling and crystallization behavior of antimony droplets. J Mater Sci 21:4215–4220

    Article  Google Scholar 

  75. Schroers J, Wu Y, Busch R, Johnson WL (2001) Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts. Acta Mater 49:2773–2781

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the NSF (DMR-1005334 and DMR-1121288) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Perepezko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perepezko, J.H., Wang, JQ. (2016). Kinetic Studies of Melting, Crystallization, and Glass Formation. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_19

Download citation

Publish with us

Policies and ethics