Skip to main content

New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry

  • Chapter
  • First Online:

Abstract

A summary of recent research about the kinetics of polymer crystallization and crystal nucleation using fast scanning chip calorimetry (FSC) is given. In the first parts, information about polymer crystallization and advantages of FSC are provided. The latter include the determination of critical cooling rates to suppress crystallization and nucleation, the determination of the (bimodal) temperature-dependence of crystallization rates, the analysis of homogeneous crystal nucleation using Tammann’s two-stage nuclei development method, the detection of changes of the structure of polymer glasses, or the analysis of the kinetics of crystal reorganization and melting. Main part of this chapter is the thorough description of analysis of the kinetics of homogenous crystal nucleation. Annealing of amorphous polymer samples below the glass transition temperature allows formation of homogeneous nuclei and ordered structures with latent heat. Disordering of the ordered domains occurs on devitrification of the glass, which then may be followed by cold-crystallization, which, in amount, is proportional to the fraction of priorly disordered structures. It seems proven that the rate of homogeneous nuclei formation is fastest slightly above the glass transition temperature, however, does not start immediately after reaching an annealing temperature in the glassy state. For all polymers studied, it was observed that first enthalpy relaxation (densification) towards the supercooled liquid state and only then homogeneous nucleation occurs. The nucleation and growth of small ordered particles in the glass of most polymers suggests that noncooperative local mobility of chain segments is sufficient to form ordered structures. By comparison of crystallization and nucleation half-times it has been found that crystal growth and nucleation cannot be fitted with a single viscosity-related term which slows the process in parallel to the bulk glass-transition kinetics; nucleation needs much faster, local transport terms. For this reason, the data of the present work strongly suggest that the classical nucleation and crystallization theories for polymers need modification. Further observations discussed in this chapter include the hindrance of slow, long-range diffusion-controlled crystal growth by the formation of a rigid amorphous fraction, and the quantitative analysis of the nucleation efficiency of carbon nanotubes. Though highly nucleated samples show two orders of magnitude faster crystallization in the region where heterogeneous nucleation dominates (low supercooling, high temperatures), homogeneous nucleation dominates at low temperatures making crystallization in this region independent of purposely added nucleating agents. Finally, the stability of homogenous nuclei has been assessed by Tammann's development method. Fast scanning calorimetry allows transfer of nuclei formed at the nucleation temperature to the development temperature in a wide range of heating rates covering at least seven orders of magnitude, ultimately allowing an estimation of the cluster (nuclei) size distribution present after the nucleation stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoffman JD, Davis GT, Lauritzen JI Jr (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, London, pp 497–614. doi:10.1007/978-1-4684-2664-9_7

    Chapter  Google Scholar 

  2. Wunderlich B (1976) Macromolecular physics, vol 2. Crystal nucleation growth. Academic, New York, NY

    Google Scholar 

  3. Gutzow IS, Schmelzer JWP (2013) The vitreous state: Thermodynamics, structure, rheology, and crystallization, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  4. Becker R (1938) Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Ann Phys 32:128–140

    Article  Google Scholar 

  5. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73

    Article  Google Scholar 

  6. Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18(2):198–203

    Article  Google Scholar 

  7. Binsbergen FL (1977) Natural and artificial heterogeneous nucleation in polymer crystallization. J Polym Sci Polym Symp 59(1):11–29. doi:10.1002/polc.5070590104

    Article  Google Scholar 

  8. Strobl G (2009) Colloquium: laws controlling crystallization and melting in bulk polymers. Rev Mod Phys 81(3):1287–1300

    Article  Google Scholar 

  9. Geil PH (1963) Polymer single crystals. Polym Rev 5

    Google Scholar 

  10. Wunderlich B (1973) Crystal structure, morphology, defects, vol 1. Macromolecular physics. Academic, New York, NY

    Google Scholar 

  11. Michler GH (2008) Electron microscopy of polymers. Springer, Berlin

    Google Scholar 

  12. Yeh GSY, Geil PH (1967) Crystallization of polyethylene terephthalate from the glassy amorphous state. J Macromol Sci Phys B 1(2):235–249

    Article  Google Scholar 

  13. Gezovich DM, Geil PH (1968) Morphology of quenched polypropylene. Polym Eng Sci 8(3):202–209. doi:10.1002/pen.760080305

    Article  Google Scholar 

  14. Lee S, Miyaji H, Geil PH (1983) Morphology of amorphous polyethylene terephthalate. J Macromol Sci Phys 22(3):489–496

    Article  Google Scholar 

  15. Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E (1996) Classification of homogeneous ethylene-octene copolymers based on comonomer content. J Polym Sci B 34(7):1301–1315. doi:10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-E

    Article  Google Scholar 

  16. Keller A (1955) The spherulitic structure of crystalline polymers. Part I. Investigations with the polarizing microscope. J Polym Sci 17(84):291–308. doi:10.1002/pol.1955.120178414

    Article  Google Scholar 

  17. Keller A (1955) The spherulitic structure of crystalline polymers. Part II. The problem of molecular orientation in polymer spherulites. J Polym Sci 17(85):351–364. doi:10.1002/pol.1955.120178503

    Article  Google Scholar 

  18. Keller A, Waring JRS (1955) The spherulitic structure of crystalline polymers. Part III. Geometrical factors in spherulitic growth and the fine-structure. J Polym Sci 17(86):447–472. doi:10.1002/pol.1955.120178601

    Article  Google Scholar 

  19. Magill JH (2001) Review spherulites: a personal perspective. J Mater Sci 36(13):3143–3164

    Article  Google Scholar 

  20. Hoffman JD, Lauritzen JIJ (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336

    Article  Google Scholar 

  21. Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. Polymers Division, National Bureau of Standards, Gaithersburg, MD

    Google Scholar 

  22. Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain‐folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352. doi:10.1063/1.1661962

    Article  Google Scholar 

  23. Wunderlich B, Mehta A (1974) Macromolecular nucleation. J Polym Sci B Polym Phys Edn 12:255–263

    Article  Google Scholar 

  24. Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E 3(2):165–183

    Article  Google Scholar 

  25. Minakov A, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E Soft Matter 23(1):43–53

    Article  Google Scholar 

  26. Toda A (2015) Heating rate dependence of melting peak temperature examined by DSC of heat flux type. J Therm Anal Calorim 123:1795–1808. doi:10.1007/s10973-015-4603-3

    Article  Google Scholar 

  27. Toda A, Taguchi K, Sato K, Nozaki K, Maruyama M, Tagashira K, Konishi M (2013) Melting kinetics of it-polypropylene crystals over wide heating rates. J Therm Anal Calorim 113(3):1231–1237. doi:10.1007/s10973-012-2914-1

    Article  Google Scholar 

  28. Toda A, Kojima I, Hikosaka M (2008) Melting kinetics of polymer crystals with an entropic barrier. Macromolecules 41(1):120–127

    Article  Google Scholar 

  29. Furushima Y, Nakada M, Murakami M, Yamane T, Toda A, Schick C (2015) Method for calculation of the lamellar thickness distribution of not-reorganized linear polyethylene using fast scanning calorimetry in heating. Macromolecules. doi:10.1021/acs.macromol.5b02278

    Google Scholar 

  30. Toda A, Androsch R, Schick C (2016) Insights into polymer crystallization and melting from fast scanning chip calorimetry., Polymer doi:10.1016/j.polymer.2016.03.038

    Google Scholar 

  31. Boersma SL (1955) A theory of differential thermal analysis and new methods of measurement and interpretation. J Am Ceram Soc 38(8):281–284. doi:10.1111/j.1151-2916.1955.tb14945.x

    Article  Google Scholar 

  32. Watson ES, O'Neill MO, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36(7):1233–1238

    Article  Google Scholar 

  33. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, New York, NY

    Google Scholar 

  34. Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, München

    Google Scholar 

  35. Höhne GWH, Hemminger W, Flammersheim HJ (2003) Differential scanning calorimetry, 2nd edn. Springer, New York, NY

    Book  Google Scholar 

  36. Androsch R, Wunderlich B (2007) Scanning calorimetry, vol 3. Macromolecular engineering, vol 3. Wiley-VCH, Berlin

    Google Scholar 

  37. Schick C (2012) Calorimetry. In: Krzysztof M, Martin M (eds) Polymer science: a comprehensive reference, vol 2. Elsevier, Amsterdam, pp 793–823. doi:10.1016/B978-0-444-53349-4.00056-X

    Chapter  Google Scholar 

  38. Pijpers MFJ, Mathot VBF, Goderis B, Scherrenberg R, van der Vegte E (2002) High-speed calorimetry for the analysis of kinetics of vitrification, crystallization and melting of macromolecule. Macromolecules 35(9):3601–3613

    Article  Google Scholar 

  39. Kolesov IS, Androsch R, Radusch HJ (2004) Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branches. J Therm Anal Calorim 78:885–895

    Article  Google Scholar 

  40. Toda A, Tomita C, Masamichi H, Saruyama Y (1997) An application of temperature modulated differential scanning calorimetry to the exothermic process of poly(ethylene terephthalate) crystallization. Polymer 38(11):2849–2852

    Article  Google Scholar 

  41. Schick C, Merzlyakov M, Wunderlich B (1998) Analysis of the reorganization of poly(ethylene terephthalate) in the melting range by temperature-modulated calorimetry. Polym Bull 40:297–303

    Article  Google Scholar 

  42. Schick C (2002) Temperature modulated differential scanning calorimetry (TMDSC) – basics and applications to polymers. In: Brown ME, Gallagher PK (eds) Handbook of thermal analysis and calorimetry, vol 3. Elsevier, New York, NY, pp 713–810

    Google Scholar 

  43. Illers KH (1971) Geordnete Strukturen in “amorphem” Polyäthylenterephthalat. Kolloid Z Z Polym 245:393–398

    Article  Google Scholar 

  44. Hernández Sánchez F, Molina Mateo J, Romero Colomer FJ, Salmerón Sánchez M, Gómez Ribelles JL, Mano JF (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6(6):3283–3290. doi:10.1021/bm050323t

    Article  Google Scholar 

  45. Salmeron Sanchez M, Mathot VBF, Vanden Poel G, Gomez Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40(22):7989–7997

    Article  Google Scholar 

  46. De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta 522(1-2):128–134. doi:10.1016/j.tca.2011.05.034

    Article  Google Scholar 

  47. Zhang T, Hu J, Duan Y, Pi F, Zhang J (2011) Physical aging enhanced mesomorphic structure in melt-quenched poly(l-lactic acid). J Phys Chem B 115:13835–13841. doi:10.1021/jp2087863

    Article  Google Scholar 

  48. Wunderlich B (1980) Crystal melting, vol 3. Macromolecular physics. Academic, New York, NY

    Google Scholar 

  49. Lee Y, Porter RS (1987) Double-melting behavior of poly(ether eher ketone). Macromolecules 20(6):1336–1341

    Article  Google Scholar 

  50. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci B Polym Phys 42:25–32

    Article  Google Scholar 

  51. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403(1):55–63

    Article  Google Scholar 

  52. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7. doi:10.1016/j.tca.2003.07.015

    Article  Google Scholar 

  53. Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177–185

    Article  Google Scholar 

  54. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78(7):073902–073910

    Article  Google Scholar 

  55. Detailed technical information about FSC chips are available by Xensor Integration® (2015) http://www.xensor.nl/index.htm

    Google Scholar 

  56. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505(1–2):1–13. doi:10.1016/j.tca.2010.03.019

    Article  Google Scholar 

  57. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522(1-2):36–45. doi:10.1016/j.tca.2011.02.031

    Article  Google Scholar 

  58. Denlinger DW, Abarra EN, Allen K, Rooney PW, Messer MT, Watson SK, Hellman F (1994) Thin-film microcalorimeter for heat-capacity measurements from 1.5-K TO 800-K. Rev Sci Instrum 65(4):946–958

    Article  Google Scholar 

  59. Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed (10(4)-degrees-C/S) scanning microcalorimetry with monolayer sensitivity (J/M(2)). Appl Phys Lett 67(9):1229–1231

    Article  Google Scholar 

  60. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522(1-2):46–52. doi:10.1016/j.tca.2011.05.025

    Article  Google Scholar 

  61. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  62. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Critical rate of cooling for suppression of crystallization in random copolymers of propylene with ethylene and 1-butene. Thermochim Acta 492(1-2):67–72

    Article  Google Scholar 

  63. Mileva D, Androsch R, Cavallo D, Alfonso GC (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polym J 48(6):1082–1092. doi:10.1016/j.eurpolymj.2012.03.009

    Article  Google Scholar 

  64. Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52(22):5156–5165. doi:10.1016/j.polymer.2011.09.007

    Article  Google Scholar 

  65. Mollova A, Androsch R, Mileva D, Schick C, Benhamida A (2013) Effect of supercooling on crystallization of polyamide 11. Macromolecules 46(3):828–835. doi:10.1021/ma302238r

    Article  Google Scholar 

  66. Rhoades AM, Williams JL, Androsch R (2015) Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim Acta 603:103–109. doi:10.1016/j.tca.2014.10.020

    Article  Google Scholar 

  67. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(epsilon caprolactone) (PCL). Polymer 52(9):1983–1997. doi:10.1016/j.polymer.2011.03.013

    Article  Google Scholar 

  68. Schawe JEK (2014) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim 116(3):1165–1173. doi:10.1007/s10973-013-3563-8

    Article  Google Scholar 

  69. Androsch R, Rhoades AM, Stolte I, Schick C (2015) Density of heterogeneous and homogeneous crystal nuclei in poly (butylene terephthalate). Eur Polym J 66:180–189. doi:10.1016/j.eurpolymj.2015.02.013

    Article  Google Scholar 

  70. Menges G, Wübken G, Horn B (1976) Einfluß der Verarbeitungsbedingungen auf die Kristallinität und Gefügestruktur teilkristalliner Spritzgußteile. Colloid Polym Sci 254(3):267–278. doi:10.1007/BF01384025

    Article  Google Scholar 

  71. Russell D, Beaumont PR (1980) Structure and properties of injection-moulded nylon-6, Part 1: structure and morphology of nylon-6. J Mater Sci 15(1):197–207. doi:10.1007/BF00552445

    Article  Google Scholar 

  72. Russell D, Beaumont PR (1980) Structure and properties of injection-moulded nylon-6, Part 2: residual stresses in injection-moulded nylon-6. J Mater Sci 15(1):208–215. doi:10.1007/BF00552446

    Article  Google Scholar 

  73. Russell D, Beaumont PR (1980) Structure and properties of injection-moulded nylon-6, Part 3: yield and fracture of injection-moulded nylon-6. J Mater Sci 15(1):216–221. doi:10.1007/BF00552447

    Article  Google Scholar 

  74. Menges G, Winkel E (1982) Effect of the cooling rate on the morphology, density and Young’s modulus of extruded films and sheets from polypropylene. Kunststoffe 72:91–95

    Google Scholar 

  75. Lamberti G, Titomanlio G, Brucato V (2002) Measurement and modelling of the film casting process: 2. Temperature distribution along draw direction. Chem Eng Sci 57(11):1993–1996. doi:10.1016/S0009-2509(02)00098-2

    Article  Google Scholar 

  76. Kennedy P, Zheng R (2013) Flow analysis of injection molds, 2nd edn. Hanser Publication, Berlin

    Book  Google Scholar 

  77. Kamal MR, Chu E (1983) Isothermal and nonisothermal crystallization of polyethylene. Polym Eng Sci 23(1):27–31. doi:10.1002/pen.760230107

    Article  Google Scholar 

  78. Supaphol P, Spruiell JE (2001) Isothermal melt- and cold-crystallization kinetics and subsequent melting behavior in syndiotactic polypropylene: a differential scanning calorimetry study. Polymer 42(2):699–712

    Article  Google Scholar 

  79. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B Polym Phys 44:1364–1377

    Article  Google Scholar 

  80. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Comm 28:875–881

    Article  Google Scholar 

  81. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  82. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290(465-471):1–7. doi:10.1007/s00396-011-2576-8

    Google Scholar 

  83. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 53(20):4429–4437. doi:10.1016/j.polymer.2012.08.001

    Article  Google Scholar 

  84. van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Vanden Poel G, Androsch R (2013) Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta 563:33–37. doi:10.1016/j.tca.2013.04.007

    Article  Google Scholar 

  85. Cavallo D, Zhang L, Portale G, Alfonso GC, Janani H, Alamo RG (2014) Unusual crystallization behavior of isotactic polypropylene and propene/1-alkene copolymers at large undercoolings. Polymer 55(15):3234–3241. doi:10.1016/j.polymer.2014.05.053

    Article  Google Scholar 

  86. Tammann G (1898) Number of nuclei in supercooled liquids. Zeitsch Phys Chem 25:441–479

    Google Scholar 

  87. Androsch R, Di Lorenzo ML (2013) Crystal nucleation in glassy poly(l-lactic acid). Macromolecules 46(15):6048–6056. doi:10.1021/ma401036j

    Article  Google Scholar 

  88. Androsch R, Di Lorenzo ML (2013) Kinetics of crystal nucleation of poly(l-lactic acid). Polymer 54(26):6882–6885. doi:10.1016/j.polymer.2013.10.056

    Article  Google Scholar 

  89. Stolte I, Androsch R, Di Lorenzo ML, Schick C (2013) Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization. J Phys Chem B 117(48):15196–15203. doi:10.1021/jp4093404

    Article  Google Scholar 

  90. Schick C, Zhuravlev E, Androsch R, Wurm A, Schmelzer JWP (2014) Influence of thermal prehistory on crystal nucleation and growth in polymers. In: Schmelzer JWP (ed) Glass-selected properties and crystallization vol 1, pp 1–93

    Google Scholar 

  91. Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15(2):786–798. doi:10.1021/cg501600s

    Article  Google Scholar 

  92. Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  Google Scholar 

  93. Mileva D, Kolesov I, Androsch R (2012) Morphology of cold-crystallized polyamide 6. Colloid Polym Sci 290(10):971–978. doi:10.1007/s00396-012-2657-3

    Article  Google Scholar 

  94. Mileva D, Androsch R, Zhuravlev E, Schick C (2012) Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 53(18):3994–4001. doi:10.1016/j.polymer.2012.06.045

    Article  Google Scholar 

  95. Androsch R, Schick C, Schmelzer JWP (2014) Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J 53(1):100–108. doi:10.1016/j.eurpolymj.2014.01.012

    Article  Google Scholar 

  96. Moynihan CT, Easteal AJ, De Bolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. Am Ceram Soc 59:12–16

    Article  Google Scholar 

  97. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials [Review]. J Non-Cryst Solids 169(3):211–266

    Article  Google Scholar 

  98. Koh YP, Grassia L, Simon SL (2015) Structural recovery of a single polystyrene thin film using nanocalorimetry to extend the aging time and temperature range. Thermochim Acta 603:135–141. doi:10.1016/j.tca.2014.08.025

    Article  Google Scholar 

  99. Gao S, Simon SL (2015) Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochim Acta 603:123–127. doi:10.1016/j.tca.2014.08.019

    Article  Google Scholar 

  100. Cangialosi D (2014) Dynamics and thermodynamics of polymer glasses. J Phys Condens Matter 26(15):153101

    Article  Google Scholar 

  101. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1,000 K/s). Polymer 45(11):3755–3763

    Article  Google Scholar 

  102. Minakov AA, Mordvintsev DA, Schick C (2005) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s−1; 5 ms). Faraday Discuss 128:261–270. doi:10.1039/b403441d

    Article  Google Scholar 

  103. Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30

    Article  Google Scholar 

  104. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 42(19):7275–7278

    Article  Google Scholar 

  105. Wunderlich B (1964) The melting of defect polymer crystals. Polymer 5:611–624

    Article  Google Scholar 

  106. Hellmuth E, Wunderlich B (1965) Superheating of linear high-polymer polyethylene crystals. J Appl Phys 36(10):3039–3044

    Article  Google Scholar 

  107. Clements J, Ward IM (1982) Superheating effects on the melting of ultra-high modulus linear polyethylene. Polymer 23(6):935–936

    Article  Google Scholar 

  108. Toda A, Tomita C, Hikosaka M, Saruyama Y (1998) Melting of polymer crystals observed by temperature modulated DSC and its kinetic modelling. Polymer 39(21):5093–5104

    Article  Google Scholar 

  109. Schawe JEK, Strobl GR (1998) Superheating effects during the melting of crystallites of syndiotactic polypropylene analyzed by temperature-modulated differential scanning calorimetry. Polymer 39(16):3745–3751

    Article  Google Scholar 

  110. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461(1-2):96–106

    Article  Google Scholar 

  111. Toda A, Konishi M (2014) An evaluation of thermal lags of fast-scan microchip DSC with polymer film samples. Thermochim Acta 589:262–269. doi:10.1016/j.tca.2014.05.038

    Article  Google Scholar 

  112. Toda A, Taguchi K, Nozaki K, Konishi M (2014) Melting behaviors of polyethylene crystals: an application of fast-scan DSC. Polymer 55(14):3186–3194. doi:10.1016/j.polymer.2014.05.009

    Article  Google Scholar 

  113. Gao H, Wang J, Schick C, Toda A, Zhou D, Hu W (2014) Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals. Polymer 55(16):4307–4312. doi:10.1016/j.polymer.2014.06.048

    Article  Google Scholar 

  114. Cheruthazhekatt S, Pijpers TFJ, Harding GW, Mathot VBF, Pasch H (2012) Compositional analysis of an impact polypropylene copolymer by fast scanning DSC and FTIR of TREF-SEC cross-fractions. Macromolecules 45:5866–5880. doi:10.1021/ma3008702

    Article  Google Scholar 

  115. Cheruthazhekatt S, Pijpers TJ, Mathot VBF, Pasch H (2013) Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers. Anal Bioanal Chem 405(28):8995–9007. doi:10.1007/s00216-013-6955-5

    Article  Google Scholar 

  116. Khanna YP (1990) A barometer of crystallization rates of polymeric materials. Polym Eng Sci 30(24):1615–1619. doi:10.1002/pen.760302410

    Article  Google Scholar 

  117. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. J Phys Chem B 117(12):3407–3415. doi:10.1021/jp311196g

    Article  Google Scholar 

  118. Gradys A, Sajkiewicz P, Adamovsky S, Minakov A, Schick C (2007) Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim Acta 461(1-2):153–157

    Article  Google Scholar 

  119. Gradys A, Sajkiewicz P, Zhuravlev E, Schick C (2015) Kinetics of isothermal and non-isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry. Polymer 82:40–48. doi:10.1016/j.polymer.2015.11.020

    Article  Google Scholar 

  120. Stolte I, Androsch R (2013) Kinetics of the melt − form II phase transition in isotactic random butene-1/ethylene copolymers. Polymer 54(26):7033–7040. doi:10.1016/j.polymer.2013.10.057

    Article  Google Scholar 

  121. Tol RT, Minakov AA, Adamovsky SA, Mathot VBF, Schick C (2006) Metastability of polymer crystallites formed at low temperature studied by ultra fast calorimetry: Polyamide 6 confined in sub-micrometer droplets vs bulk PA6. Polymer 47(6):2172–2178

    Article  Google Scholar 

  122. Androsch R, Schick C, Rhoades AM (2015) Application of Tammann’s two-stage crystal nuclei development method for analysis of the thermal stability of homogeneous crystal nuclei of poly(ethylene terephthalate). Macromolecules. doi:10.1021/acs.macromol.5b01912

    Google Scholar 

  123. Androsch R, Iqbal N, Schick C (2015) Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer 81:151–158. doi:10.1016/j.polymer.2015.11.006

    Article  Google Scholar 

  124. Papageorgiou DG, Zhuravlev E, Papageorgiou GZ, Bikiaris D, Chrissafis K, Schick C (2014) Kinetics of nucleation and crystallization in poly(butylene succinate) nanocomposites. Polymer 55(26):6725–6734. doi:10.1016/j.polymer.2014.11.014

    Article  Google Scholar 

  125. Cavallo D, Mileva D, Portale G, Zhang L, Balzano L, Alfonso GC, Androsch R (2012) Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett 1(8):1051–1055. doi:10.1021/mz300349z

    Article  Google Scholar 

  126. Nishida K, Zhuravlev E, Yang B, Schick C, Shiraishi Y, Kanaya T (2015) Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochim Acta 603:110–115. doi:10.1016/j.tca.2014.07.020

    Article  Google Scholar 

  127. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19. doi:10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  128. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. doi:10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  129. Mercier JP (1990) Nucleation in polymer crystallization: a physical or a chemical mechanism? Polym Eng Sci 30(5):270–278. doi:10.1002/pen.760300504

    Article  Google Scholar 

  130. Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric ″efficiency scale″ and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B 31(10):1395–1405

    Article  Google Scholar 

  131. Donth E-J (2001) The glass transition: Relaxation dynamics in liquids and disordered materials. Springer, Berlin

    Book  Google Scholar 

  132. Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than 6 decades. Thermochim Acta 603:128–134. doi:10.1016/j.tca.2014.05.025

    Article  Google Scholar 

  133. Tropin TV, Schulz G, Schmelzer JWP, Schick C (2015) Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates. J Non-Cryst Solids 409:63–75. doi:10.1016/j.jnoncrysol.2014.11.001

    Article  Google Scholar 

  134. Konishi T, Nishida K, Matsuba G, Kanaya T (2008) Mesomorphic phase of poly(butylene-2,6-naphthalate). Macromolecules 41:3157–3161

    Article  Google Scholar 

  135. Wunderlich B (1995) The athas database on heat capacities of polymers. Pure Appl Chem 67(6):1019–1026, http://www.springermaterials.com/docs/athas.html

    Article  Google Scholar 

  136. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14. doi:10.1016/j.tca.2015.07.009

    Article  Google Scholar 

  137. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505(1-2):14–21. doi:10.1016/j.tca.2010.03.020

    Article  Google Scholar 

  138. Androsch R, Lorenzo MLD, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51(21):4639–4662. doi:10.1016/j.polymer.2010.07.033

    Article  Google Scholar 

  139. Androsch R, Schick C (2015) Crystal nucleation of polymers at high supercooling of the melt. Adv Polym Sci 2015:1–30 doi:10.1007/12_2015_325

    Google Scholar 

  140. Losev YPL (1997) Transparent polyolefins. Handbook of engineering polymeric materials. CRC Press, Boca Raton, FL

    Google Scholar 

  141. Mileva D, Androsch R, Radusch HJ (2009) Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polym Bull 62(4):561–571

    Article  Google Scholar 

  142. Zia Q, Radusch H-J, Androsch R (2009) Deformation behavior of isotactic polypropylene crystallized via a mesophase. Polym Bull 63:755–771

    Article  Google Scholar 

  143. Zia Q, Androsch R, Radusch H-J (2010) Effect of the structure at the micrometer and nanometer scales on the light transmission of isotactic polypropylene. J Appl Polym Sci 117(2):1013–1020. doi:10.1002/app.31638

    Article  Google Scholar 

  144. Mileva D, Zia Q, Androsch R (2010) Tensile properties of random copolymers of propylene with ethylene and 1-butene: effect of crystallinity and crystal habit. Polym Bull 65(6):623–634. doi:10.1007/s00289-010-0274-1

    Article  Google Scholar 

  145. Kolesov I, Mileva D, Androsch R (2014) Mechanical behavior and optical transparency of polyamide 6 of different morphology formed by variation of the pathway of crystallization. Polym Bull 71(3):581–593. doi:10.1007/s00289-013-1079-9

    Article  Google Scholar 

  146. Yadav YS, Jain PC, Nanda VS (1985) A study of isothermal lamellar thickening in polyethylene by differential scanning calorimetry. Thermochim Acta 84:141–150. doi:10.1016/0040-6031(85)85382-X

    Article  Google Scholar 

  147. Marand H, Huang Z (2004) Isothermal lameller thickening in linear polyethylene: correlation between the evolution of the degree of crystallinity and the melting temperature. Macromolecules 37(17):6492–6497

    Article  Google Scholar 

  148. Zia Q, Androsch R, Radusch H-J, Ingoliç E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60(6):791–798. doi:10.1007/s00289-008-0908-8

    Article  Google Scholar 

  149. Turnbull D, Cormia RL (1961) Kinetics of crystal nucleation in some normal alkane liquids. J Chem Phys 34(3):820–831

    Article  Google Scholar 

  150. Cormia RL, Price FP, Turnbull D (1962) Kinetics of crystal nucleation in polyethylene. J Chem Phys 37(6):1333–1340. doi:10.1063/1.1733282

    Article  Google Scholar 

  151. Burns JR, Turnbull D (1966) Kinetics of crystal nucleation in molten isotactic polypropylene. J Appl Phys 37(11):4021–4026. doi:10.1063/1.1707969

    Article  Google Scholar 

  152. Koutsky JA, Walton AG, Baer E (1967) Nucleation of polymer droplets. J Appl Phys 38(4):1832–1839

    Article  Google Scholar 

  153. Gornick F, Ross GS, Frolen LJ (1967) Crystal nucleation in polyethylene: the droplet experiment. J Polym Sci C Polym Symp 18(1):79–91. doi:10.1002/polc.5070180108

    Article  Google Scholar 

  154. Jin Y, Hiltner A, Baer E, Masirek R, Piorkowska E, Galeski A (2006) Formation and transformation of smectic polypropylene nanodroplets. J Polym Sci B 44(13):1795–1803. doi:10.1002/polb.20839

    Article  Google Scholar 

  155. Sánchez MS, Mathot V, Vanden Poel G, Groeninckx G, Bruls W (2006) Crystallization of polyamide confined in sub-micrometer droplets dispersed in a molten polyethylene matrix. J Polym Sci B 44(5):815–825. doi:10.1002/polb.20738

    Article  Google Scholar 

  156. Ibarretxe J, Groeninckx G, Bremer L, Mathot VBF (2009) Quantitative evaluation of fractionated and homogeneous nucleation of polydisperse distributions of water-dispersed maleic anhydride-grafted-polypropylene micro- and nano-sized droplets. Polymer 50(19):4584–4595

    Article  Google Scholar 

  157. Langhe DS, Hiltner A, Baer E (2011) Transformation of isotactic polypropylene droplets from the mesophase into the α-phase. J Polym Sci B 49:1672–1682. doi:10.1002/polb.22357

    Article  Google Scholar 

  158. Vyazovkin S, Dranca I (2007) Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B 111(25):7283–7287

    Article  Google Scholar 

  159. Frank W, Goddar H, Stuart HA (1967) Electron microscopic investigations on amorphous polycarbonate. J Polym Sci B Polym Lett 5(8):711–713. doi:10.1002/pol.1967.110050818

    Article  Google Scholar 

  160. Zia Q, Ingolič E, Androsch R (2010) Surface and bulk morphology of cold-crystallized poly(ethylene terephthalate). Colloid Polym Sci 288(7):819–825. doi:10.1007/s00396-010-2210-1

    Article  Google Scholar 

  161. Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C (2012) Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules 45(9):3816–3828. doi:10.1021/ma300363b

    Article  Google Scholar 

  162. Zhuravlev E, Wurm A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ɛ -caprolactone) – multiwalled carbon nanotube composites. Eur Polym J 52:1–11. doi:10.1016/j.eurpolymj.2013.12.015

    Article  Google Scholar 

  163. Avrami M (1940) Transformation-time relaxtions for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  164. Wurm A, Soliman R, Schick C (2003) Early stages of polymer crystallization – a dielectric stud. Polymer 44(24):7467–7476

    Article  Google Scholar 

  165. Schmelzer JWP, Hellmuth O (2013) Nucleation theory and applications. Joint Institute for Nuclear Research, Dubna

    Google Scholar 

  166. Fillon B, Thierry A, Lotz B, Wittmann JC (1994) Efficiency scale for polymer nucleating agents. J Therm Anal 42:721–731

    Article  Google Scholar 

  167. Trujillo M, Arnal ML, Müller AJ, Mujica MA, Urbina de Navarro C, Ruelle B, Dubois P (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 53(3):832–841. doi:10.1016/j.polymer.2011.12.028

    Article  Google Scholar 

  168. Fillon BJC, Wittmann B, Lotz and Thierry A (1993) Self-Nucleation and Recrystallization of lsotactic Polypropylene (a Phase) Investigated by Differential Scanning Calorimetry. J Polym Sci B: Polym Phys 31:1383–1393

    Google Scholar 

  169. Müller A, Hernández Z, Arnal M, Sánchez J (1997) Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472. doi:10.1007/s002890050174

    Google Scholar 

  170. Wurm A, Ismail M, Kretzschmar B, Pospiech D, Schick C (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43:1480–1487. doi:10.1021/ma902175r

    Article  Google Scholar 

  171. Purohit PJ, Wang D-Y, Wurm A, Schick C, Schönhals A (2014) Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and layered double hydroxide – proof of interfaces. Eur Polym J 55:48–56. doi:10.1016/j.eurpolymj.2014.03.005

    Article  Google Scholar 

  172. Mileva D, Monami A, Cavallo D, Alfonso GC, Portale G, Androsch R (2013) Crystallization of a polyamide 6/montmorillonite nanocomposite at rapid cooling. Macromol Mater Eng 298(9):938–943. doi:10.1002/mame.201200253

    Article  Google Scholar 

  173. Kolesov I, Androsch R, Mileva D, Lebek W, Benhamida A, Kaci M, Focke W (2013) Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling. Colloid Polym Sci 291:2541–2549. doi:10.1007/s00396-013-2977-y

    Article  Google Scholar 

  174. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2011) Formation and reorganization of the mesophase of random copolymers of propylene and 1-butene. Polymer 52(4):1107–1115. doi:10.1016/j.polymer.2011.01.021

    Article  Google Scholar 

  175. Wurm A, Schick C (2002) Development of thermal stability of polymer crystals during isothermal crystallisation. Polymers 24:1–15

    Google Scholar 

  176. Kohn P, Strobl G (2004) Continuous changes in the inner order of the crystalline lamellae during isothermal crystallization of poly(-caprolactone). Macromolecules 37:6823–6826

    Article  Google Scholar 

  177. Kim HG, Robertson RE (1998) A new approach for estimating the recrystallization rate and equilibrium melting temperature. J Polym Sci B Polym Phys 36(1):133–141

    Article  Google Scholar 

  178. Androsch R, Zhuravlev E, Schick C (2014) Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly (l-lactic acid). Polymer 55:4932–4941. doi:10.1016/j.polymer.2014.07.046

    Article  Google Scholar 

  179. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277–282. doi:10.1016/j.polymer.2011.11.064

    Article  Google Scholar 

  180. Hutchinson JM, Smith S, Horne B, Gourlay GM (1999) Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32(15):5046–5061

    Article  Google Scholar 

  181. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28(3):383–450

    Article  Google Scholar 

  182. Donth E (2001) Glass transition. Thermal glass transition. Glass temperature. Partial freezing. Springer, Berlin

    Google Scholar 

  183. Wunderlich B (1973, 1976, and 1980, resp.) Macromolecular physics, vols. 1–3, vol 1. Crystal structure, morphology, defects. Academic, New York, NY

    Google Scholar 

  184. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, Heidelberg

    Google Scholar 

  185. Oguni M (1997) Intra-cluster rearrangement model for the alpha-process in supercooled liquids, as opposed to cooperative rearrangement of whole molecules within a cluster. J Non-Cryst Solids 210(2-3):171–177

    Article  Google Scholar 

  186. Mehta A, Wunderlich B (1975) A study of molecular fractionation during the crystallization polymers. Colloid Polym Sci 253:193–205

    Article  Google Scholar 

  187. Muthukumar M (2005) Modeling polymer crystallization. Adv Polym Sci 191:241–274

    Article  Google Scholar 

  188. Mikhnevich GL, Browko JF (1938) Stability of the crystallization centers of an organic liquid at various temperatures and conclusions to be drawn therefrom concerning Tammann’s method. Phys Z Sowjetunion 13:9

    Google Scholar 

  189. Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Solids 352(26–27):2681–2714. doi:10.1016/j.jnoncrysol.2006.02.074

    Article  Google Scholar 

  190. Nascimento MLF, Fokin VM, Zanotto ED, Abyzov AS (2011) Dynamic processes in a silicate liquid from above melting to below the glass transition. J Chem Phys 135(19):194703

    Article  Google Scholar 

  191. Tsuji H, Sawada M (2010) Accelerated crystallization of poly(l-lactide) by physical aging. J Appl Polym Sci 116(2):1190–1196. doi:10.1002/app.31667

    Google Scholar 

  192. Bove L, D’Aniello C, Gorrasi G, Guadagno L, Vittoria V (1997) Influence of ageing on the cold crystallization of glassy poly(ethyleneterephthalate). Polym Bull 38(5):579–585. doi:10.1007/s002890050091

    Article  Google Scholar 

  193. Lu X, Hay JN (2000) The effect of physical aging on the rates of cold crystallization of poly(ethylene terephthalate). Polymer 41(20):7427–7436. doi:10.1016/S0032-3861(00)00092-6

    Article  Google Scholar 

  194. Kiflie Z, Piccarolo S, Brucato V, Balta-Calleja FJ (2002) Role of thermal history on quiescent cold crystallization of PET. Polymer 43(16):4487–4493

    Article  Google Scholar 

  195. Di Lorenzo ML (2006) The crystallization and melting processes of poly(l-lactic acid). Macromol Symp 234(1):176–183. doi:10.1002/masy.200650223

    Article  Google Scholar 

  196. Tsuji H, Ikada Y (1996) Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys 197(10):3483–3499. doi:10.1002/macp.1996.021971033

    Article  Google Scholar 

  197. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly(l-lactic acid). Polymer 47(21):7554–7563. doi:10.1016/j.polymer.2006.08.054

    Article  Google Scholar 

  198. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47(11):3826–3837. doi:10.1016/j.polymer.2006.03.074

    Article  Google Scholar 

  199. Li XJ, Li ZM, Zhong GJ, Li LB (2008) Steady–shear‐induced isothermal crystallization of poly(l‐lactide) (PLLA). J Macromol Sci B 47(3):511–522. doi:10.1080/00222340801955313

    Article  Google Scholar 

  200. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677. doi:10.1016/j.progpolymsci.2012.07.005

    Article  Google Scholar 

  201. Di Lorenzo ML (2001) Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 42(23):9441–9446. doi:10.1016/S0032-3861(01)00499-2

    Article  Google Scholar 

  202. Rybnikar F (1963) Mechanism of secondary crystallization in polymers. J Polym Sci A Gen Paper 1(6):2031–2038. doi:10.1002/pol.1963.100010620

    Article  Google Scholar 

  203. Slezov VV, Schmelzer J (2002) Kinetics of formation of a phase with an arbitrary stoichiometric composition in a multicomponent solid solution. Phys Rev E Stat Nonlinear Soft Matter Phys 65(3):031506/031501–031506/031513

    Article  Google Scholar 

  204. Slezov VV (2009) Kinetics of first-order phase transitions. Wiley, Hoboken, NJ

    Book  Google Scholar 

  205. Kelton KF, Greer AL (2010) Nucleation in condensed matter, vol 15. Elsevier, Amsterdam

    Google Scholar 

  206. Nojima S, Tsutsui H, Urushihara M, Kosaka W, Kato N, Ashida T (1986) A dynamic study of crystallization of poly(epsilon-caprolactone) and poly(epsilon-caprolactone)/poly(vinyl chloride) blend. Polym J 18(6):451–461

    Article  Google Scholar 

  207. Tzong-Ming Wu E-CC (2006) Isothermal and nonisothermal crystallization kinetics of poly(epsilon-caprolactone)/multi-walled carbon nanotube composites. Polym Eng Sci 46(9):1309–1317

    Article  Google Scholar 

  208. Chen Y-F, Woo E (2008) Growth regimes and spherulites in thin-film poly(ɛ-caprolactone) with amorphous polymers. Colloid Polym Sci 286:917–926

    Article  Google Scholar 

  209. Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413–414:442–446

    Article  Google Scholar 

  210. Ray VV, Banthia AK, Schick C (2007) Fast isothermal calorimetry of modified polypropylene clay nanocomposites. Polymer 48(8):2404–2414

    Article  Google Scholar 

  211. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2011) Isotropization, perfection and reorganization of the mesophase of isotactic polypropylene. Thermochim Acta 522(1-2):100–109. doi:10.1016/j.tca.2011.01.005

    Article  Google Scholar 

  212. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Formation and reorganization of the mesophase of isotactic polypropylene. Mol Cryst Liq Cryst 556(1):74–83. doi:10.1080/15421406.2012.635912

    Article  Google Scholar 

  213. van Drongelen M, van Erp TB, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53(21):4758–4769. doi:10.1016/j.polymer.2012.08.003

    Article  Google Scholar 

  214. Schawe JEK (2015) Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim Acta 603:85–93. doi:10.1016/j.tca.2014.11.006

    Article  Google Scholar 

  215. Schawe JK, Vermeulen P, van Drongelen M (2015) A new crystallization process in polypropylene highly filled with calcium carbonate. Colloid Polym Sci 293(6):1607–1614. doi:10.1007/s00396-015-3571-2

    Article  Google Scholar 

  216. Papageorgiou DG, Papageorgiou GZ, Zhuravlev E, Bikiaris D, Schick C, Chrissafis K (2013) Competitive crystallization of a propylene/ethylene random copolymer filled with a β-nucleating agent and multi-walled carbon nanotubes. conventional and ultrafast DSC study. J Phys Chem B 117(47):14875–14884. doi:10.1021/jp409395h

    Article  Google Scholar 

  217. Wurm A, Herrmann A, Cornelius M, Zhuravlev E, Pospiech D, Nicula R, Schick C (2015) Temperature dependency of nucleation efficiency of carbon nanotubes in PET and PBT. Macromol Mater Eng 300(6):637–649. doi:10.1002/mame.201400405

    Article  Google Scholar 

  218. Tardif X, Pignon B, Boyard N, Schmelzer JWP, Sobotka V, Delaunay D, Schick C (2014) Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter. Polym Test 36:10–19. doi:10.1016/j.polymertesting.2014.03.013

    Article  Google Scholar 

  219. Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol Chem Phys 215(11):1134–1139. doi:10.1002/macp.201400126

    Article  Google Scholar 

  220. Schawe JEK, Köhler A (2014) Using flash DSC technology to verify structural changes. Kunststoffe Int 4:34–37

    Google Scholar 

  221. Baeten D, Mathot VBF, Pijpers TFJ, Verkinderen O, Portale G, Van Puyvelde P, Goderis B (2015) Simultaneous synchrotron WAXD and fast scanning (Chip) calorimetry: on the (isothermal) crystallization of HDPE and PA11 at high supercoolings and cooling rates up to 200 °C s −1. Macromol Rapid Comm 36(12):1184–1191. doi:10.1002/marc.201500081

    Article  Google Scholar 

  222. Dong X-H, Van Horn R, Chen Z, Ni B, Yu X, Wurm A, Schick C, Lotz B, Zhang W-B, Cheng SZD (2013) Exactly defined half-stemmed polymer lamellar crystals with precisely controlled defects’ locations. J Phys Chem Lett 4:2356–2360. doi:10.1021/jz401132j

    Article  Google Scholar 

  223. Krumme A, Lehtinen A, Adamovsky S, Schick C, Roots J, Viikna A (2008) Crystallization behavior of some unimodal and bimodal linear low-density polyethylenes at moderate and high supercooling. J Polym Sci B 46(15):1577–1588

    Article  Google Scholar 

  224. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Schick C (2013) Beating the heat – fast scanning melts silk beta sheet crystals. Sci Rep 3(1130):1–7. doi:10.1038/srep01130

    Google Scholar 

  225. Cavallo D, Gardella L, Alfonso G, Portale G, Balzano L, Androsch R (2011) Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci 289(9):1073–1079. doi:10.1007/s00396-011-2428-6

    Article  Google Scholar 

  226. Xu J, Ma Y, Hu W, Rehahn M, Reiter G (2009) Cloning polymer single crystals through self-seeding. Nat Mater 8:348–353

    Article  Google Scholar 

  227. Mamun A, Umemoto S, Okui N, Ishihara N (2007) Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules 40(17):6296–6303

    Article  Google Scholar 

  228. Blundell DJ, Keller A (1968) Nature of self-seeding polyethylene crystal nuclei. J Macromol Sci B 2(2):301–336. doi:10.1080/00222346808212454

    Article  Google Scholar 

  229. Wunderlich B, Cormier CM (1966) Seeding of supercooled polyethylene with extended chain crystals. J Phys Chem 70(6):1844–1849

    Article  Google Scholar 

  230. Müller AJ, Michell RM, Pérez RA, Lorenzo AT (2015) Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur Polym J 65:132–154. doi:10.1016/j.eurpolymj.2015.01.015

    Article  Google Scholar 

  231. Michell RM, Mugica A, Zubitur M, Müller AJ (2015) Self-nucleation of crystalline phases within homopolymers, polymer blends, copolymers, and nanocomposites. In. Advances in polymer science. Springer, Berlin, pp 1–42. doi:10.1007/12_2015_327

    Google Scholar 

  232. Williams ML, Landel RF, Ferry DJ (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Ceram Soc 77:3701–3707

    Google Scholar 

Download references

Acknowledgements

This work would have been impossible without the contributions from many colleagues. Particularly we thank (in alphabetical order) A. Abyzov, S. Adamovsky, G.W.H. Höhne, M. Merzliakov, D. Mileva, A.A. Minakov, D. Mordvintsev, K. Nishida, P. Pötschke, J.W.P. Schmelzer, G. Strobl, B. Wunderlich, A. Wurm, E. Zhuravlev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schick, C., Androsch, R. (2016). New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_15

Download citation

Publish with us

Policies and ethics