Skip to main content

Cooling Rate Dependent Glass Transition in Thin Polymer Films and in Bulk

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

The glass transition is a well-known phenomenon marking the crossover from a liquid in metastable equilibrium to an out-of-equilibrium glass. In this chapter employing fast scanning calorimetry (FSC), we investigate the glass transition of bulk polystyrene (PS) and the corresponding films spin-coated on silicon oxide with thickness as low as \( \sim \) 10 nm. To do so, we employ a procedure based on determining the glass transition temperature (T g ) as that where non-equilibrium effects begin to be calorimetrically detectable. This provides a measure of the onset of the glass transition, that is the T g(on). This method allows obtaining the T g(on) in a wide range of cooling rates and with a precision generally not achievable by means of conventional methods. The main results of the study are that: (1) the cooling rate dependent T g(on) follows the Vogel–Fulcher–Tammann law for all thicknesses; (2) T g(on) decrease from bulk behaviour is observed for the smallest employed thickness (\( \sim \) 10 nm). For the investigated film configuration (supported on silicon oxide), the decrease in T g(on) becomes progressively large as the cooling rate is decreased. In particular, at the highest investigated cooling rates (\( \sim \) 1000 K/s) a decrease of several Kelvin is observed, whereas the T g(on) is depressed by \( \sim \) 15 K at a cooling rate of 0.1 K/s. This result is discussed in relation to the thickness dependence of the rate of spontaneous fluctuations in PS. This appears to be thickness independent for films configuration analogous to that of the present study. Hence, it is unequivocally shown how relaxational arguments, that is, those based on the effect of the rate of spontaneous fluctuations on the thermal glass transition, are insufficient to catch the T g(on) decrease from bulk behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During equilibrium recovery the change of thermodynamic state of the glass implies a concomitant change of the relaxation time of spontaneous fluctuations.

  2. 2.

    It is worth to point out that cooling through its thermal glass transition is one of the numerous ways to bring a glass-forming liquid out-of-equilibrium. Among them, one is that based on applying non-linear dielectric perturbations to a metastable supercooled liquid [7, 92].

  3. 3.

    In the study of Efremov et al. [32], it was concluded that no appreciable T g deviations existed. This was corroborated by the fact that the thinnest films investigated in such work (\( \sim \) 1.5 nm) exhibited T g very close to bulk PS. However, when films of larger thickness are considered a clear trend to T g depression with decreasing film thickness was present.

References

  1. Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–146

    Article  Google Scholar 

  2. Akabori K-I, Tanaka K, Takahara A, Kajiyama T, Nagamura T (2007) Substrate effect on mechanical relaxation of polystyrene in ultrathin films. Eur Phys J Spec Top 141:173–180. doi: 10.1140/epjst/e2007-00036-8. URL http://dx.doi.org/10.1140/epjst/e2007-00036-8

    Google Scholar 

  3. Angell C (1991) Relaxation in liquids, polymers and plastic crystals - strong fragile patterns and problems. J Non-Cryst Solids 131(Part 1):13–31

    Google Scholar 

  4. Badrinarayanan P, Zheng W, Li Q, Simon SL (2007) The glass transition temperature versus the fictive temperature. J Non-Cryst Sol 353(26):2603–2612

    Article  Google Scholar 

  5. Baeumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: Surface effect or artifact? Phys Rev Lett 109(5):055701

    Article  Google Scholar 

  6. Bahar I, Erman B, Kremer F, Fischer E (1992) Segmental motions of cis-polyisoprene in the bulk state - interpretation of dielectric-relaxation data. Macromolecules 25(2):816–825

    Article  Google Scholar 

  7. Bauer T, Lunkenheimer P, Kastner S, Loidl A (2013) Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys Rev Lett 110(10)

    Google Scholar 

  8. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, Masri DE, L’Hôte D, Ladieu F, Pierno M (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310(5755):1797–1800

    Article  Google Scholar 

  9. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Gonzalez-Irun J, Liz-Marzan LM (2010) Accelerated physical aging in PMMA/silica nanocomposites. Soft Matter 6(14):3306–3317

    Article  Google Scholar 

  10. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2010) Enthalpy recovery of PMMA/silica nanocomposites. Macromolecules 43(18):7594–7603

    Article  Google Scholar 

  11. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2011) Enthalpy recovery of glassy polymers: dramatic deviations from the extrapolated liquid like behavior. Macromolecules 44(20):8333–8342

    Article  Google Scholar 

  12. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Pastoriza-Santos I, Liz-Marzan LM (2011) Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t(g) depression. Soft Matter 7(7):3607–3620

    Article  Google Scholar 

  13. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Enthalpy recovery in nanometer to micrometer thick ps films. Macromolecules 45(12):5296–5306

    Article  Google Scholar 

  14. Boucher VM, Cangialosi D, Yin H, Schoenhals A, Alegría A, Colmenero J (2012) T-g depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8(19):5119–5122

    Article  Google Scholar 

  15. Boucher VM, Cangialosi D, Alegria A, Colmenero J (2014) Accounting for the thickness dependence of the {T}g in supported {PS} films via the volume holes diffusion model. Thermochim Acta 575:233–237

    Article  Google Scholar 

  16. Callen H, Greene R (1952) On a theorem of irreversible thermodynamics. Phys Rev 86(5):702–710

    Article  Google Scholar 

  17. Cangialosi D, Alegría A, Colmenero J (2007) Route to calculate the length scale for the glass transition in polymers. Phys Rev E 76(1, 1):011514

    Google Scholar 

  18. Cangialosi D, Alegria A, Colmenero J (2007) “Self-concentration” effects on the dynamics of a polychlorinated biphenyl diluted in 1,4-polybutadiene. J Chem Phys 126(20)

    Google Scholar 

  19. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2011) Free volume holes diffusion to describe physical aging in poly(methyl methacrylate)/silica nanocomposites. J Chem Phys 135(1), 014901

    Google Scholar 

  20. Cangialosi D, Boucher V, Alegría A, Colmenero J (2013) Direct evidence of two equilibration mechanisms in glassy polymers. Phys Rev Lett 111:095701

    Article  Google Scholar 

  21. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36):8619–8630

    Article  Google Scholar 

  22. Cangialosi D, Wübbenhorst M, Groenewold J, Mendes E, Schut H, van Veen A, Picken SJ (2004) Physical aging of polycarbonate far below the glass transition temperature: evidence for the diffusion mechanism. Phys Rev B 70:224213

    Article  Google Scholar 

  23. Cangialosi D, Schwartz G, Alegria A, Colmenero J (2005) Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. J Chem Phys 123(14)

    Google Scholar 

  24. Chai Y, Salez T, McGraw JD, Benzaquen M, Dalnoki-Veress K, Raphaël E, Forrest JA (2014) A direct quantitative measure of surface mobility in a glassy polymer. Science 343(6174):994–999

    Article  Google Scholar 

  25. Cho WK, Kong B, Choi IS (2007) Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir 23(10):5678–5682

    Article  Google Scholar 

  26. Curro JG, Lagasse RR, Simha R (1982) Diffusion model for volume recovery in glasses. Macromolecules 15(6):1621–1626

    Article  Google Scholar 

  27. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  28. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524–1527

    Article  Google Scholar 

  29. Donati C, Douglas J, Kob W, Plimpton S, Poole P, Glotzer S (1998) Stringlike cooperative motion in a supercooled liquid. Phys Rev Lett 80(11):2338–2341

    Article  Google Scholar 

  30. Donth E (1982) The size of cooperatively rearranging regions at the glass-transition. J Non-Cryst Solids 53(3):325–330

    Article  Google Scholar 

  31. Donth E, Korus J, Hempel E, Beiner M (1997) Comparison of DSC heating rate and HCS frequency at the glass transition. Thermochim Acta 305(6):239–249

    Article  Google Scholar 

  32. Efremov MY, Olson EA, Zhang M, Zhang ZS, Allen LH (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37(12), 4607–4616

    Article  Google Scholar 

  33. Efremov MY, Kiyanova AV, Last J, Soofi SS, Thode C, Nealey PF (2012) Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum. Phys Rev E 86:021501

    Article  Google Scholar 

  34. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2(10):695–700

    Article  Google Scholar 

  35. Evans CM, Torkelson JM (2012) Dramatic tunability of polystyrene Tg via neighboring domains: equivalence of multilayer films and binary blends. Abs Pap Am Chem Soc 244: 27–PMSE

    Google Scholar 

  36. Fakhraai Z, Forrest JA (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95(2):025701

    Google Scholar 

  37. Fakhraai Z, Forrest JA (2008) Measuring the surface dynamics of glassy polymers. Science 319(5863):600–604

    Article  Google Scholar 

  38. Forrest J, Dalnoki-Veress K, Dutcher J (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56(5, B):5705–5716

    Google Scholar 

  39. Forrest JA, Dalnoki-Veress K (2001) The glass transition in thin polymer films. Adv Colloid Interf Sci 94(1-3, SI):167–196

    Google Scholar 

  40. Forrest JA, Dalnoki-Veress K (2014) When does a glass transition temperature not signify a glass transition? ACS Macro Lett 3(4):310–314

    Article  Google Scholar 

  41. Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77(10):2002–2005

    Article  Google Scholar 

  42. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene. Phys Rev E 61(2):1743–1754

    Article  Google Scholar 

  43. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8(6):339–355

    Article  Google Scholar 

  44. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney R (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85(11):2340–2343

    Article  Google Scholar 

  45. Glor EC, Fakhraai Z (2014) Facilitation of interfacial dynamics in entangled polymer films. J Chem Phys 141(19):194505

    Article  Google Scholar 

  46. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106(12):128301

    Article  Google Scholar 

  47. Golovchak R, Kozdras A, Balitska V, Shpotyuk O (2012) Step-wise kinetics of natural physical ageing in arsenic selenide glasses. J Phys Condens Matter 24(50):505106

    Article  Google Scholar 

  48. Grohens Y, Brogly M, Labbe C, David MO, Schultz J (1998) Glass transition of stereoregular poly(methyl methacrylate) at interfaces. Langmuir 14(11):2929–2932

    Article  Google Scholar 

  49. Hecksher T, Olsen NB, Niss K, Dyre JC (2010) Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J Chem Phys 133(17):174514

    Article  Google Scholar 

  50. Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000) Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J Phys Chem B 104(11):2460–2466

    Article  Google Scholar 

  51. Hodge IM (1995) Physical aging in polymer glasses. Science 267(5206):1945–1947

    Article  Google Scholar 

  52. Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20(4):703–760

    Article  Google Scholar 

  53. Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44(20):2996–3005

    Article  Google Scholar 

  54. Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43(2):219–256

    Article  Google Scholar 

  55. Koh YP, McKenna GB, Simon SL (2006) Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci B Polym Phys 44(24):3518–3527

    Article  Google Scholar 

  56. Koh YP, Simon SL (2008) Structural relaxation of stacked ultrathin polystyrene films. J Polym Sci B Polym Phys 46(24):2741–2753

    Article  Google Scholar 

  57. Koh YP, Simon SL (2013) Enthalpy recovery of polystyrene: does a long-term aging plateau exist? Macromolecules 46(14):5815–5821

    Article  Google Scholar 

  58. Kovacs AJ (1963) Glass transition in amorphous polymers: a phenomenological study. Fortsch. Hochpolym. Forsch. 3(1/2):394–508

    Google Scholar 

  59. Kovacs A, Braun G (1963) Glass transition in powdered polystyrene. Phys Chem Glasses. 4(4):152–160

    Article  Google Scholar 

  60. Labahn D, Mix R, Schönhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79:011801

    Article  Google Scholar 

  61. Lipson JEG, Milner ST (2010) Local and average glass transitions in polymer thin films. Macromolecules 43(23): 9874–9880

    Google Scholar 

  62. Lodge T, McLeish T (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14):5278–5284

    Article  Google Scholar 

  63. Long D, Lequeux F (2000) Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur Phys J E 4(3):371–387

    Article  Google Scholar 

  64. Lubchenko V, Wolynes PG (2007) Theory of structural glasses and supercooled liquids. Annu Rev Phys Chem 58:235–266

    Article  Google Scholar 

  65. Lupascu V, Huth H, Schick C, Wubbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta 432(2):222–228

    Article  Google Scholar 

  66. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9(44):10592–10598

    Article  Google Scholar 

  67. Mathot V, Pyda M, Pijpers T, Poel GV, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The flash {DSC} 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522(1-2):36–45

    Google Scholar 

  68. McCaig MS, Paul DR (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part I. Experimental observations. Polymer 41(2):629–637

    Article  Google Scholar 

  69. McKenna GB (1989) Glass formation and glassy behavior. Pergamon Press, Oxford

    Book  Google Scholar 

  70. Mirigian S, Schweizer KS (2014) Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J Chem Phys 141(16), 161103. doi:http://dx.doi.org/10.1063/1.4900507. URL http://scitation.aip.org/content/aip/journal/jcp/141/16/10.1063/1.4900507

    Google Scholar 

  71. Miyazaki T, Inoue R, Nishida K, Kanaya T (2007) X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur Phys J Spec Top 141: 203–206

    Article  Google Scholar 

  72. Moynihan CT, Macedo PB, Montrose CJ, Gupta PK, De Bolt MA, Dill JF, Dom BE, Drake PW, Eastel AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Structural relaxation in vitreous materials. Ann N Y Acad Sci 279(OCT15):15–35

    Google Scholar 

  73. Napolitano S, Cangialosi D (2013) Interfacial Free Volume and Vitrification: Reduction in T-g in Proximity of an Adsorbing Interface Explained by the Free Volume Holes Diffusion Model. Macromolecules 46(19):8051–8053

    Google Scholar 

  74. Napolitano S, Wuebbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51(23):5309–5312

    Article  Google Scholar 

  75. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260

    Article  Google Scholar 

  76. Napolitano S, Rotella C, Wübbenhorst M (2012) Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? ACS Macro Lett 1(10):1189–1193

    Article  Google Scholar 

  77. Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1d confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36(6):61

    Article  Google Scholar 

  78. Noh YY, Zhao N, Caironi M, Sirringhaus H (2007) Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat Nanotechnol 2(12):784–789

    Article  Google Scholar 

  79. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113

    Article  Google Scholar 

  80. O’Connell P, McKenna G (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307(5716):1760–1763

    Article  Google Scholar 

  81. O’Connell PA, Hutcheson SA, McKenna GB (2008) Creep behavior of ultra-thin polymer films. J Polym Sci B Polym Phys 46(18):1952–1965

    Article  Google Scholar 

  82. Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133(22):8444–8447

    Article  Google Scholar 

  83. Paeng K, Richert R, Ediger MD (2012) Molecular mobility in supported thin films of polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) probed by dye reorientation. Soft Matter 8:819–826

    Article  Google Scholar 

  84. Park CH, Kim JH, Ree M, Sohn BH, Jung JC, Zin WC (2004) Thickness and composition dependence of the glass transition temperature in thin random copolymer films. Polymer 45(13):4507–4513

    Article  Google Scholar 

  85. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  Google Scholar 

  86. Perlich J, Koerstgens V, Metwalli E, Schulz L, Georgii R, Mueller-Buschbaum P (2009) Solvent content in thin spin-coated polystyrene homopolymer films. Macromolecules 42(1):337–344

    Article  Google Scholar 

  87. Pfromm PH, Koros WJ (1995) Accelerated physical aging of thin glassy polymer-films - evidence from gas-transport measurements. Polymer 36(12):2379–2387

    Article  Google Scholar 

  88. Priestley RD (2009) Physical aging of confined glasses. Soft Matter 5(5):919–926

    Article  Google Scholar 

  89. Priestley RD, Broadbelt LJ, Torkelson JM, Fukao K (2007) Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene. Phys Rev E 75(6, 1):061806

    Google Scholar 

  90. Pryamitsyn V, Ganesan V (2010) A comparison of the dynamical relaxations in a model for glass transition in polymer nanocomposites and polymer thin films. Macromolecules 43(13):5851–5862

    Article  Google Scholar 

  91. Pye JE, Roth CB (2011) Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys Rev Lett 107(23), 235701

    Article  Google Scholar 

  92. Richert R, Weinstein S (2006) Nonlinear dielectric response and thermodynamic heterogeneity in liquids. Phys Rev Lett 97(9)

    Google Scholar 

  93. Roth C, Dutcher J (2003) Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur Phys J E 12(1):S103–S107

    Article  Google Scholar 

  94. Roth CB, McNerny KL, Jager WF, Torkelson JM (2007) Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules 40(7):2568–2574

    Article  Google Scholar 

  95. Schawe JEK (2014) Vitrification in a wide cooling rate range: the relations between cooling rate, relaxation time, transition width, and fragility. The Journal of Chemical Physics 141(18), 184905. doi:http://dx.doi.org/10.1063/1.4900961. URL http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4900961

    Google Scholar 

  96. Schmelzer JWP, Gutzow IS, Mazurin OV, Priven AI, Todorova SV, Petrov BP (2011) Glasses and the glass transition. Wiley, Weinheim

    Book  Google Scholar 

  97. Schubert D, Dunkel T (2003) Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mater Res Innov 7(5):314–321

    Article  Google Scholar 

  98. Serghei A, Kremer F (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys 209(8):810–817

    Article  Google Scholar 

  99. Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41(10):3636–3639

    Article  Google Scholar 

  100. Shamim N, Koh YP, Simon SL, McKenna GB (2014) Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. J Polym Sci B Polym Phys 52(22):1462–1468

    Article  Google Scholar 

  101. Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91:235701

    Article  Google Scholar 

  102. Soles C, Douglas J, Wu W, Peng H, Gidley D (2004) Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37(8):2890–2900

    Article  Google Scholar 

  103. Struik LCE (1977) Physical aging in amorphous polymers and other materials. Technische Hogeschool Delft. URL http://books.google.es/books?id=Yc8EPwAACAAJ

    Google Scholar 

  104. Struik LCE (1978) Physical aging in amorphous glassy polymers and other materials, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  105. Svanberg C (2007) Glass transition relaxations in thin suspended polymer films. Macromolecules 40(2):312–315

    Article  Google Scholar 

  106. Tammann G, Hesse W (1926) The dependency of viscosity on temperature in hypothermic liquids. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  107. Tanaka Y, Yamamoto T (2012) Enthalpy relaxation of comb-like polymer analysed by combining activation energy spectrum and TNM models. J Non-Cryst Solids 358(14):1687–1698

    Article  Google Scholar 

  108. Thornton AW, Hill AJ (2010) Vacancy diffusion with time-dependent length scale: An insightful new model for physical aging in polymers. Ind Eng Chem Res 49(23):12119–12124

    Article  Google Scholar 

  109. Thornton AW, Nairn KM, Hill AJ, Hill JM, Huang Y (2009) New relation between diffusion and free volume: II. predicting vacancy diffusion. J Membr Sci 338(1–2):38–42

    Article  Google Scholar 

  110. Tool A (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29(9):240–253

    Article  Google Scholar 

  111. Tress M, Erber M, Mapesa EU, Huth H, Mueller J, Serghei A, Schick C, Eichhorn KJ, Volt B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43(23):9937–9944

    Article  Google Scholar 

  112. Tsui O, Russell T, Hawker C (2001) Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34(16):5535–5539

    Article  Google Scholar 

  113. Vignaud G, Chebil MS, Bal JK, Delorme N, Beuvier T, Grohens Y, Gibaud A (2014) Densification and depression in glass transition temperature in polystyrene thin films. Langmuir 30(39):11599–11608

    Article  Google Scholar 

  114. Vogel H (1921) The temperature dependence law of the viscosity of fluids. Phys Z 22:645–646

    Google Scholar 

  115. Wallace W, Vanzanten J, Wu W (1995) Influence of an impenetrable interface on a polymer glass-transition temperature. Phys Rev E 52(4, A):R3329–R3332

    Google Scholar 

  116. Wang, X., Zhou, W (2002) Glass transition of microtome-sliced thin films. Macromolecules 35(18):6747–6750

    Article  Google Scholar 

  117. Wang L, Velikov V, Angell C (2002) Direct determination of kinetic fragility indices of glass forming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117(22):10184–10192

    Article  Google Scholar 

  118. White RP, Lipson JEG (2011) Thermodynamic treatment of polymer thin-film glasses. Phys Rev E 84(4, 1):041801

    Google Scholar 

  119. Wunderlich B (ed) (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  120. Xu J, Ding L, Chen J, Gao S, Li L, Zhou D, Li X, Xue G (2014) Sensitive characterization of the influence of substrate interfaces on supported thin films. Macromolecules 47(18):6365–6372

    Article  Google Scholar 

  121. Yang XN, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5(4):579–583

    Article  Google Scholar 

  122. Yave W, Car A, Wind J, Peinemann KV (2010) Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology 21(39)

    Google Scholar 

  123. Zhao J, McKenna GB (2012) Temperature divergence of the dynamics of a poly(vinyl acetate) glass: dielectric vs. mechanical behaviors. J Chem Phys 136(15):154901

    Google Scholar 

  124. Zhou D, Huth H, Gao Y, Xue G, Schick C (2008) Calorimetric glass transition of poly(2,6-dimethyl-1,5-phenylene oxide) thin films. Macromolecules 41(20):7662–7666

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of the Basque Country and Basque Country Government (Ref. No. IT-654-13 (GV)), Depto. Educación, Universidades e Investigación and Spanish Government (Grant No. MAT2012-31088 and MAT2015-63704-P) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cangialosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cangialosi, D., Alegría, A., Colmenero, J. (2016). Cooling Rate Dependent Glass Transition in Thin Polymer Films and in Bulk. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_13

Download citation

Publish with us

Policies and ethics