Skip to main content

Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting

  • Chapter
  • First Online:
Fast Scanning Calorimetry
  • 2044 Accesses

Abstract

Reversible and irreversible melting of lamellar polymer crystals have been studied by means of combining fast-scan chip calorimetry of polymorphic isotactic polypropylenes with dynamic Monte Carlo simulations of polymer chains on a lattice. Different polymorphic phases of polypropylenes are linked to variation of the chain mobility in the crystals of the same species, and this mobility appears as an adjustable parameter in parallel molecular simulations. Such a combination of two different approaches having complemental advantages facilitates a better understanding of the complex phase transition behaviors of lamellar polymer crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450

    Article  Google Scholar 

  2. Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser, Munich

    Google Scholar 

  3. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  4. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7

    Article  Google Scholar 

  5. Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic Thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185

    Article  Google Scholar 

  6. Iervolino E, van Herwaarden AW, van Herwaarden FG, van de Kerkhof E, van Grinsven PPW, Leenaers ACHI, Mathot VBF, Sarro PM (2011) Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the METTLER TOLEDO Flash DSC 1. Thermochim Acta 522:53–59

    Article  Google Scholar 

  7. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  Google Scholar 

  8. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the METTLER TOLEDO Flash DSC 1. Thermochim Acta 522:46–52

    Article  Google Scholar 

  9. Vanden Poel G, Istrate D, Magon A, Mathot V (2012) Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110:1533–1546

    Article  Google Scholar 

  10. Cheng SZD (2008) Phase transitions in polymers: the role of metastable states. Elsevier, Amsterdam

    Google Scholar 

  11. Li Z, Jiang X, Gao H, Zhou D, Hu W (2014) Fast-scan chip-calorimeter measurement on the melting behaviors of melt-crystallized syndiotactic polystyrene. J Therm Anal Calorim 118:1531–1536

    Article  Google Scholar 

  12. Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (alpha'-phase) of poly(l-lactic acid). Macromol Chem Phys 215:1134–1139

    Article  Google Scholar 

  13. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763

    Article  Google Scholar 

  14. Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30

    Article  Google Scholar 

  15. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Critical rate of cooling for suppression of crystallization in random copolymers of propylene with ethylene and 1-butene. Thermochim Acta 492:67–72

    Article  Google Scholar 

  16. Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–798

    Article  Google Scholar 

  17. Wang J, Li Z, Perez RA, Mueller AJ, Zhang B, Grayson SM, Hu W (2015) Comparing crystallization rates between linear and cyclic poly(epsilon-caprolactones) via fast-scan chip-calorimeter measurements. Polymer 63:34–40

    Article  Google Scholar 

  18. Androsch R, Schick C, Schmelzer JWP (2014) Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J 53:100–108

    Article  Google Scholar 

  19. Stolte I, Androsch R, Di Lorenzo ML, Schick C (2013) Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization. J Phys Chem B 117:15196–15203

    Article  Google Scholar 

  20. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL). Polymer 52:1983–1997

    Article  Google Scholar 

  21. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  22. Mileva D, Androsch R, Zhuravlev E, Schick C (2012) Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 53:3994–4001

    Article  Google Scholar 

  23. Grapes MD et al (2014) Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev Sci Instrum 85(8):084902

    Article  Google Scholar 

  24. Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D (2014) Integration of ultrafast scanning calorimetry with micro-Raman spectroscopy for investigation of metastable materials. Rev Sci Instrum 85:074901

    Article  Google Scholar 

  25. Riekel C, Di Cola E, Reynolds M, Burghammer M, Rosenthal M, Doblas D, Ivanov DA (2015) Thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. Langmuir 31:529–534

    Article  Google Scholar 

  26. Baeten D, Mathot VBF, Pijpers TFJ, Verkinderen O, Portale G, Van Puyvelde P, Goderis B (2015) Simultaneous synchrotron WAXD and fast scanning (Chip) calorimetry: on the (isothermal) crystallization of HDPE and PA11 at high supercoolings and cooling rates up to 200 °C s−1. Macromol Rapid Commun 36:1184–1191

    Article  Google Scholar 

  27. Luo C, Sommer J-U (2009) Coexistence of melting and growth during heating of a semicrystalline polymer. Phys Rev Lett 102:147801

    Article  Google Scholar 

  28. Sommer J-U, Luo C (2010) Molecular dynamics simulations of semicrystalline polymers: crystallization, melting, and reorganization. J Polym Sci B Polym Phys 48:2222–2232

    Article  Google Scholar 

  29. Yamamoto T (2010) Molecular dynamics of reversible and irreversible melting in chain-folded crystals of short polyethylene-like polymer. Macromolecules 43:9384–9393

    Article  Google Scholar 

  30. Zhang J, Muthukumar M (2007) Monte Carlo simulations of single crystals from polymer solutions. J Chem Phys 126:234904

    Article  Google Scholar 

  31. Ren Y, Ma A, Li J, Jiang X, Ma Y, Toda A, Hu W (2010) Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur Phys J E 33:189–202

    Article  Google Scholar 

  32. Hu WB, Frenkel D, Mathot VBF (2003) Intramolecular nucleation model for polymer crystallization. Macromolecules 36:8178–8183

    Article  Google Scholar 

  33. Hu WB (2005) Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation. Macromolecules 38:8712–8718

    Article  Google Scholar 

  34. Hu WB (2007) Intramolecular crystal nucleation. In: Strobl RG (ed) Lecture notes in physics: Progress in understanding of polymer crystallization. Springer, Berlin and Heidelberg, Germany, pp 47–63

    Chapter  Google Scholar 

  35. Kreer T, Baschnagel J, Muller M, Binder K (2001) Monte Carlo simulation of long chain polymer melts: crossover from rouse to reptation dynamics. Macromolecules 34:1105–1117

    Article  Google Scholar 

  36. Li J, Hu WB (2015) Biased diffusion induces coil deformation via a ‘cracking-the-whip’ effect of acceleration generated by dynamic heterogeneity along a polymer chain. Polym Int 64:49–53

    Article  Google Scholar 

  37. Lin H, Mattice WL, Von Meerwall ED (2006) Dynamics of polyethylene melts studied by Monte Carlo simulations on a high coordination lattice. J Polym Sci B Polym Phys 44:2556–2571

    Article  Google Scholar 

  38. Harmandaris VA, Mavrantzas VG, Theodorou DN, Kroger M, Ramirez J, Ottinger HC, Vlassopoulos D (2003) Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules 36:1376–1387

    Article  Google Scholar 

  39. Paul W, Smith GD, Yoon DY, Farago B, Rathgeber S, Zirkel A, Willner L, Richter D (1998) Chain motion in an unentangled polyethylene melt: a critical test of the rouse model by molecular dynamics simulations and neutron spin echo spectroscopy. Phys Rev Lett 80:2346–2349

    Article  Google Scholar 

  40. Sefiddashti MHN, Edwards BJ, Khomami B (2015) Individual chain dynamics of a polyethylene melt undergoing steady shear flow. J Rheol 59:119

    Article  Google Scholar 

  41. Gao H, Wang J, Schick C, Toda A, Zhou D, Hu W (2014) Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals. Polymer 55:4307–4312

    Article  Google Scholar 

  42. Jiang XM, Li ZL, Wang J, Gao HH, Zhou DS, Tang YW, Hu WB (2015) Combining TMDSC measurements between chip-calorimeter and molecular simulation to study reversible melting of polymer crystals. Thermochim Acta 603:79–84

    Article  Google Scholar 

  43. Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431

    Article  Google Scholar 

  44. Dong M, Gu Z, Yu J, Su Z (2008) Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as beta-form nucleating agent. J Polym Sci B Polym Phys 46:1725–1733

    Article  Google Scholar 

  45. Dong M, Guo Z-X, Yu J, Su Z-Q (2009) Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene. J Polym Sci B Polym Phys 47:314–325

    Article  Google Scholar 

  46. Hu WB, Frenkel D (2005) Polymer crystallization driven by anisotropic interactions. Adv Polym Sci 191:1–35

    Article  Google Scholar 

  47. Wunderlich B (2007) One hundred years research on supercooling and superheating. Thermochim Acta 461:4–13

    Article  Google Scholar 

  48. Wunderlich B (1980) Macromolecular physics. Academic, New York

    Google Scholar 

  49. Wunderlich B (1976) Macromolecular physics. Academic, New York

    Google Scholar 

  50. Toda A, Hikosaka M, Yamada K (2002) Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism. Polymer 43:1667–1679

    Article  Google Scholar 

  51. Toda A, Kojima I, Hikosaka M (2008) Melting kinetics of polymer crystals with an entropic barrier. Macromolecules 41:120–127

    Article  Google Scholar 

  52. Minakov AA, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E 23:43–53

    Article  Google Scholar 

  53. Toda A, Taguchi K, Sato K, Nozaki K, Maruyama M, Tagashira K, Konishi M (2013) Melting kinetics of it-polypropylene crystals over wide heating rates. J Therm Anal Calorim 113:1231–1237

    Article  Google Scholar 

  54. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  Google Scholar 

  55. Wunderlich B (2009) Quasi-isothermal temperature-modulated differential scanning calorimetry (TMDSC) for the separation of reversible and irreversible thermodynamic changes in glass transition and melting ranges of flexible macromolecules. Pure Appl Chem 81:1931–1952

    Article  Google Scholar 

  56. Okazaki I, Wunderlich B (1997) Reversible melting in polymer crystals detected by temperature-modulated differential scanning calorimetry. Macromolecules 30:1758–1764

    Article  Google Scholar 

  57. Hu WB, Albrecht T, Strobl G (1999) Reversible surface melting of PE and PEO crystallites indicated by TMDSC. Macromolecules 32:7548–7554

    Article  Google Scholar 

  58. Goderis B, Reynaers H, Scherrenberg R, Mathot VBF, Koch MHJ (2001) Temperature reversible transitions in linear polyethylene studied by TMDSC and time-resolved, temperature-modulated WAXD/SAXS. Macromolecules 34:1779–1787

    Article  Google Scholar 

  59. Albrecht T, Armbruster S, Keller S, Strobl G (2001) Kinetics of reversible surface crystallization and melting in poly(ethylene oxide): effect of crystal thickness observed in the dynamic heat capacity. Eur Phys J E 6:237–243

    Article  Google Scholar 

  60. Albrecht T, Armbruster S, Keller S, Strobl G (2001) Dynamics of surface crystallization and melting in polyethylene and poly(ethylene oxide) studied by temperature-modulated DSC and heat wave spectroscopy. Macromolecules 34:8456–8467

    Article  Google Scholar 

  61. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. J Phys Chem B 117:3407–3415

    Article  Google Scholar 

  62. Minakov AA, Mordvintsev DA, Schick C (2005) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s(−1); 5 ms). Faraday Discuss 128:261–270

    Article  Google Scholar 

  63. Shoifet E, Schulz G, Schick C (2015) Temperature modulated differential scanning calorimetry—extension to high and low frequencies. Thermochim Acta 603:227–236

    Article  Google Scholar 

  64. Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611

    Article  Google Scholar 

  65. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J 49:1057–1065

    Article  Google Scholar 

  66. Merzlyakov M, Schick C (2000) Optimization of experimental parameters in TMDSC—the influence of non-linear and non-stationary thermal response. J Therm Anal Calorim 61:649–659

    Article  Google Scholar 

  67. Androsch R, Moon I, Kreitmeier S, Wunderlich B (2000) Determination of heat capacity with a sawtooth-type, power-compensated temperature-modulated DSC. Thermochim Acta 357:267–278

    Article  Google Scholar 

  68. Hu W, Wunderlich B (2001) Data analysis without Fourier transformation for sawtooth-type temperature-modulated DSC. J Therm Anal Calorim 66:677–697

    Article  Google Scholar 

  69. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  Google Scholar 

  70. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902–073910

    Article  Google Scholar 

  71. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21

    Article  Google Scholar 

  72. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14

    Article  Google Scholar 

  73. Gaur U, Wunderlich B (1981) Heat-capacity and Other thermodynamic properties of linear macromolecules: 4. Polypropylene. J Phys Chem Ref Data 10:1051–1064

    Article  Google Scholar 

  74. Merzlyakov M, Wurm A, Zorzut M, Schick C (1999) Frequency and temperature amplitude dependence of complex heat capacity in the melting region of polymers. J Macromol Sci Phys B38:1045–1054

    Article  Google Scholar 

  75. Schick C, Wurm A, Mohamed A (2002) Dynamics of reversible melting revealed from frequency dependent heat capacity. Thermochim Acta 392(3):03–313

    Google Scholar 

  76. Schick C, Wurm A, Mohammed A (2003) Formation and disappearance of the rigid amorphous fraction in semicrystalline polymers revealed from frequency dependent heat capacity. Thermochim Acta 396:119–132

    Article  Google Scholar 

  77. Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34:5950–5960

    Article  Google Scholar 

  78. Androsch R, Wunderlich B (2003) Specific reversible melting of polymers. J Polym Sci B Polym Phys 41:2039–2051

    Article  Google Scholar 

Download references

Acknowledgement

The financial support from National Natural Science Foundation of China (NO. 21274061 and 21274057), National Basic Research Program of China (NO. 2011CB606100), Program for Changjiang Scholars and Innovative Research Team in University, and Priority Academic Program Development of Jiangsu Higher Education Institutions is appreciated. We also thank Technology Center of Juhua Group for a part of support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, X., Li, Z., Gao, H., Hu, W. (2016). Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_12

Download citation

Publish with us

Policies and ethics