Skip to main content

Abelian Integrals: From the Tangential 16th Hilbert Problem to the Spherical Pendulum

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

Abstract

In this chapter we deal with abelian integrals. They play a key role in the infinitesimal version of the 16th Hilbert problem. Recall that 16th Hilbert problem and its ramifications is one of the principal research subject of Christiane Rousseau and of the first author. We recall briefly the definition and explain the role of abelian integrals in 16th Hilbert problem. We also give a simple well-known proof of a property of abelian integrals. The reason for presenting it here is that it serves as a model for more complicated and more original treatment of abelian integrals in the study of Hamiltonian monodromy of fully integrable systems, which is the main subject of this chapter. We treat in particular the simplest example presenting non-trivial Hamiltonian monodromy: the spherical pendulum.

Dedicated to Christiane Rousseau for her mathematical and non-mathematical impact

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, M.S., Marsden, J.E.: Semiclassical monodromy and the spherical pendulum as a complex Hamiltonian system. In: Conservative Systems and Quantum Chaos. Fields Institute Communication, no. 8. AMS and Fields Institute, Calgary (1996)

    Google Scholar 

  2. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Arnol’d, V.I.: Arnold’s Problems. Springer, Berlin (2004). Translated and revised edition of the 2000 Russian original

    Google Scholar 

  4. Arnol’d, V.I., Goussein-Zade, S.M., Varchenko, A.N.: Singularities of Differential Mappings. Birkhauser, Boston (1988)

    Book  Google Scholar 

  5. Assémat, E., Efstathiou, K., Joyeux, M., Sugny, D.: Fractional bidromy in the vibrational spectrum of HOCl. Phys. Rev. Lett. 104, 113002 (2010)

    Article  Google Scholar 

  6. Audin, M.: Hamiltonian monodromy via Picard-Lefschetz theory. Commun. Math. Phys. 229, 459 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beukers, F., Cushman, R.H.: The complex geometry of the spherical pendulum. Contemp. Math. Celest. Mech. 292, 47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Binyamini G., Novikov, D., Yakovenko, S.: On the number of zeros of Abelian integrals: a constructive solution of the infinitesimal Hilbert sixteenth problem. Invent. Math. 181, 227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems: Geometry, Topology, Classification. Chapman and Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  10. Cushman, R.H., Bates, L.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  11. Cushman, R.H., Dullin, H.R., Giacobbe, A., Holm, D.D., Joyeux, M., Lynch, P., Sadovskii, D.A., Zhilinskii, B.I.: CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. Phys. Rev. Lett. 93, 024302 (2004)

    Article  Google Scholar 

  12. Duistermaat, J.J.: On global action-angle coordinates. Commun. Pure Appl. Math. 33, 687 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumortier, F., Roussarie, R.: Abelian integrals and limit cycles. J. Differ. Equ. 227, 116 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumortier, F., Roussarie, R., Rousseau, C.: Hilbert 16-th problem for quadratic vector fields. J. Differ. Equ. 110, 86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Efstathiou, K.: Metamorphoses of Hamiltonian Systems with Symmetries. Lecture Notes in Mathematics, vol. 1864. Springer, Berlin (2005)

    Google Scholar 

  16. Efstathiou, K., Broer, H.W.: Uncovering fractional monodromy. Commun. Math. Phys. 324, 549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Efstathiou, K., Sadovskií, D.A.: Normalization and global analysis of perturbations of the hydrogen atom. Rev. Mod. Phys. 82, 2099 (2010)

    Article  Google Scholar 

  18. Efstathiou, K., Sugny, D.: Integrable Hamiltonian systems with swallowtails. J. Phys. A 43, 085216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Efstathiou, K., Joyeux, M., Sadovskií, D.A.: Global bending quantum number and the absence of monodromy in the HCN-CNH molecule. Phys. Rev. A 69, 032504 (2004)

    Article  Google Scholar 

  20. Efstathiou, K., Cushman, R.H., Sadovskií, D.A.: Fractional monodromy in the 1:1:2 resonance. Adv. Math. 20, 241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Efstathiou, K., Lukina, O.V., Sadovskií, D.A.: Most typical 1:2 resonant perturbation of the hydrogen atom by weak electric and magnetic fields. Phys. Rev. Lett. 101, 253003 (2008)

    Article  Google Scholar 

  22. Gavrilov, L.: The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 143, 449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giacobbe, A.: Fractional monodromy: parallel transport of homology cycles. Differ. Geom. Appl. 26, 140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grondin, L., Sadovskií, D.A., Zhilinskii, B.I.: Monodromy as topological obstruction to global action-angle variables in systems with coupled angular momenta and rearrangement of bands in quantum spectra. Phys. Rev. A 65, 012105 (2001)

    Article  Google Scholar 

  25. Guillemin, V., Uribe, A.: Monodromy in the quantum spherical pendulum. Commun. Math. Phys. 122, 563 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ilyashenko, Y.S.: Appearance of limit cycles by perturbation of the equation \(dw/dz = Rz/Rw\), where R(z, w) is a polynomial. Mat. Sbornik (New Series) 78, 360 (1969)

    Google Scholar 

  27. Khovanskii, A.: Real analytic manifolds with the property of finiteness and complex abelian integrals. Funktsional. Anal. i Prilozhen. 18, 40 (1984)

    Article  MathSciNet  Google Scholar 

  28. Kirwan, F.: Complex Algebraic Curves. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  29. Llibre, J., Pedregal, P.: Hilbert’s 16th problem. When variational principles meet differential systems (2015). arXiv: 14116814

    Google Scholar 

  30. Nekhoroshev, N.N.: Action-angle variables and their generalizations. Trans. Mosc. Math. Soc. 26, 180 (1972)

    MathSciNet  MATH  Google Scholar 

  31. Nekhoroshev, N.N., Sadovskií, D.A., Zhilinskií, B.I.: Fractional Hamiltonian monodromy. Ann. Inst. Henri Poincaré 7, 1099 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sadovskií, D.A., Zhilinskií, B.I.: Hamiltonian systems with detuned 1:1:2 resonance: Manifestation of bidromy. Ann. Phys. 32, 164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sugny, D., Mardesic, P., Pelletier, M., Jebrane, A., Jauslin, H.R.: Fractional Hamiltonian monodromy from a Gauss-Manin monodromy. J. Math. Phys. 49, 042701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Varchenko, A.N.: Estimation of the number of zeros of an abelian integral depending on a parameter and limit cycles. Funct. Anal. Appl. 18, 14 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vivolo, O.: The monodromy of the Lagrange top and the Picard-Lefschetz formula. J. Geom. Phys. 46, 99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vu Ngoc, S.: Quantum monodromy in integrable systems. Commun. Math. Phys. 203, 465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winnewisser, B.P., Winnewisser, M., Medvedev, I.R., Behnke, M., De Lucia, F.C., Ross, S.C., Koput, J.: Experimental confirmation of quantum monodromy: the millimeter wave spectrum of cyanogen isothiocyanate NCNCS. Phys. Rev. Lett. 95, 243002 (2005)

    Article  Google Scholar 

  38. Zoladek, H.: The Monodromy Group. Birkhauser, Boston (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

D. Sugny acknowledges support of the Technische Universität München, Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement number 291763. As a Hans Fisher fellow (partially financed through the Marie Curie COFUND program), D. Sugny also acknowledges the support from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavao Mardešić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mardešić, P., Sugny, D., Van Damme, L. (2016). Abelian Integrals: From the Tangential 16th Hilbert Problem to the Spherical Pendulum. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_15

Download citation

Publish with us

Policies and ethics