Skip to main content

Effective Conductivity and Critical Properties of a Hexagonal Array of Superconducting Cylinders

  • Chapter
  • First Online:
Contributions in Mathematics and Engineering

Abstract

Effective conductivity of a 2D composite corresponding to the regular hexagonal arrangement of superconducting disks is expressed in the form of a long series in the volume fraction of ideally conducting disks. According to our calculations based on various resummation techniques, both the threshold and critical index are obtained in good agreement with expected values. The critical amplitude is in the interval (5. 14, 5. 24) that is close to the theoretical estimation 5. 18. The next-order (constant) term in the high-concentration regime is calculated for the first time, and the best estimate is equal to − 6. 229. The final formula is derived for the effective conductivity for arbitrary volume fraction.

In Honor of Constantin Carathéodory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamyan, V.M., Tkachenko, I.M., Urrea, M.: Solution of the Stieltjes truncated moment problem. J. Appl. Anal. 9, 57–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrianov, I.V., Starushenko, G.A., Danishevskyy, V.V., Tokarzewski, S.: Homogenization procedure and Pade approximants for effective heat conductivity of composite materials with cylindrical inclusions having square cross-section. Proc. R. Soc. Lond. A 455, 3401–3413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrianov, I.V., Danishevskyy, V.V., Guillet, A., Pareige, P.: Effective properties and micro-mechanical response of filamentary composite wires under longitudinal shear. Eur. J. Mech. A/Solids 24, 195–206 (2005)

    Article  MATH  Google Scholar 

  4. Andrianov, I.V., Danishevskyy, V.V., Kalamkarov, A.L.: Analysis of the effective conductivity of composite materials in the entire range of volume fractions of inclusions up to the percolation threshold. Compos. Part B 41, 503–507 (2010)

    Article  Google Scholar 

  5. Andrianov, I.V., Awrejcewicz, J., Starushenko, G.A.: Application of an improved three-phase model to calculate effective characteristics for a composite with cylindrical inclusions. Lat. Am. J. Solids Struct. 10, 197–222 (2013)

    Article  Google Scholar 

  6. Baker, G.A., Graves-Moris, P.: Padé Approximants. Cambridge University, Cambridge (1996)

    Book  MATH  Google Scholar 

  7. Bender, C.M., Boettcher, S.: Determination of \(f(\infty )\) from the asymptotic series for f(x) about x = 0. J. Math. Phys. 35, 1914–1921 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman, D.J.: Dielectric-constant of a composite-material-problem in classical physics. Phys. Rep. 43, 378–407 (1978)

    Article  MathSciNet  Google Scholar 

  9. Berlyand, L., Kolpakov, A.: Network approximation in the limit of small interparticle distance of the effective properties of a high contrast random dispersed composite. Arch. Ration. Mech. Anal. 159, 179–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berlyand, L., Novikov, A.: Error of the network approximation for densely packed composites with irregular geometry. SIAM J. Math. Anal. 34, 385–408 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen, R.M.: Mechanics of Composite Materials, pp. 1–384. Dover, New York (2005)

    Google Scholar 

  12. Czapla, R., Nawalaniec, W., Mityushev, V.: Effectivev conductivity of random two-dimensional composites with circular non-overlapping inclusions. Comput. Mater. Sci. 63, 118–126 (2012)

    Article  Google Scholar 

  13. Derkach, V., Hassi, S., de Snoo, H.: Truncated moment problems in the class of generalized Nevanlinna functions. Math. Nachr. 285 (14–15), 1741–1769 (2012). doi:10.1002/mana.201100268

    Article  MathSciNet  MATH  Google Scholar 

  14. Dunjko, V., Olshanii, M.: A Hermite-Pade perspective on the renormalization group, with an application to the correlation function of Lieb-Liniger gas. J. Phys. A Math. Theor. 44, 055206 (2011). 10.1088/1751-8113/44/5/055206

    Article  MathSciNet  MATH  Google Scholar 

  15. Gluzman, S., Mityushev, V.: Series, Index and threshold for random 2D composite. Arch. Mech. 67 (1), 75–93 (2015)

    Google Scholar 

  16. Gluzman, S., Yukalov, V.: Unified approach to crossover phenomena. Phys. Rev. E 58, 4197–4209 (1998)

    Article  Google Scholar 

  17. Gluzman, S., Yukalov, V.I.: Self-similar extrapolation from weak to strong coupling. J. Math. Chem. 48, 883–913 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gluzman, S., Yukalov, V.I.: Extrapolation of perturbation-theory expansions by self-similar approximants. Eur. J. Appl. Math. 25, 595–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gluzman, S., Yukalov, V.I., Sornette, D.: Self-similar factor approximants. Phys. Rev. E 67 (2), art. 026109 (2003)

    Google Scholar 

  20. Gluzman, S., Karpeev, D.A., Berlyand, L.V.: Effective viscosity of puller-like microswimmers: a renormalization approach. J. R. Soc. Interface 10, 20130720 (2013). http://dx.doi.org/10.1098/rsif.2013.0720

    Article  Google Scholar 

  21. Gluzman, S., Mityushev, V., Nawalaniec, W.: Cross-properties of the effective conductivity of the regular array of ideal conductors. Arch. Mech. 66 (4), 287–301 (2014)

    MATH  Google Scholar 

  22. Golden, K., Papanicolaou, G.: Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys. 90, 473–91 (1983)

    Article  MathSciNet  Google Scholar 

  23. Gonchar, A.A.: Rational Approximation of analytic functions. Proc. Steklov Inst. Math. 272 (Suppl. 2), S44–S57 (2011)

    Article  MATH  Google Scholar 

  24. Gonzales-Vera, P., Njastad, O.: Szego functions and multipoint Pade approximation. J. Comput. Appl. Math. 32, 107–116 (1990)

    Article  MathSciNet  Google Scholar 

  25. Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge University Press, Cambridge (1915)

    MATH  Google Scholar 

  26. Hendriksen, E.: Moment methods in two point Pade approximation. J. Approx. Theory 40, 313–326 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kalamkarov, A.L., Andrianov, I.V., Starushenko, G.A.: Three-phase model for a composite material with cylindrical circular inclusions. Part I: application of the boundary shape perturbation method. Int. J. Eng. Sci. 78, 154–177 (2014)

    MathSciNet  Google Scholar 

  28. Kalamkarov, A.L., Andrianov, I.V., Starushenko, G.A.: Three-phase model for a composite material with cylindrical circular inclusions, Part II: application of Padé approximants. Int. J. Eng. Sci. 78, 178–191 (2014)

    MathSciNet  Google Scholar 

  29. Keller, J.B.: Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys. 34, 991–993 (1963)

    Article  MATH  Google Scholar 

  30. Keller, J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys. 5, 548–549 (1964). doi:10.1063/1.1704146

    Article  MathSciNet  MATH  Google Scholar 

  31. Krein, M.G., Nudel’man, A.A.: The Markov Moment Problem and Extremal Problems (in Russian), Nauka, Moscow (1973); Translations of Mathematical Monographs American Mathematical Society 50. Providence, RI (1977)

    Google Scholar 

  32. Markushevich, A.I.: Theory of Functions of a Complex Variable, 1st edn. Chelsea, New York (1977) (Translated from Russian)

    MATH  Google Scholar 

  33. Maxwell, J.C.: Electricity and Magnetism, 1st edn., p. 365. Clarendon Press, Oxford (1873)

    Google Scholar 

  34. McPhedran, R.C.: transport properties of cylinder pairs and of the square array of cylinders. Proc. R. Soc. Lond. A 408, 31–43 (1986). doi:10.1098/rspa.1986.0108

    Google Scholar 

  35. McPhedran, R.C., Poladian, L., Milton, G.W.: Asymptotic studies of closely spaced, highly conducting cylinders. Proc. R. Soc. A 415, 185–196 (1988)

    Article  Google Scholar 

  36. Mityushev, V.: Steady heat conduction of a material with an array of cylindrical holes in the nonlinear case. IMA J. Appl. Math. 61, 91–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mityushev, V.: Exact solution of the \(\mathbb{R}\)-linear problem for a disk in a class of doubly periodic functions. J. Appl. Funct. Anal. 2, 115–127 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Mityushev, V., Rylko, N.: Maxwell’s approach to effective conductivity and its limitations. Q. J. Mech. Appl. Math. (2013). doi:10.1093/qjmam/hbt003

    MathSciNet  MATH  Google Scholar 

  39. Perrins, W.T., McKenzie, D.R., McPhedran, R.C.: Transport properties of regular array of cylinders. Proc. R. Soc. A 369, 207–225 (1979)

    Article  MathSciNet  Google Scholar 

  40. Rayleigh, J.W.: On the influence of obstacles arranged in rectangular order upon the properties of medium. Philos. Mag. 34, 481–502 (1892)

    Article  MATH  Google Scholar 

  41. Suetin, S.P.: Padé approximants and efficient analytic continuation of a power series. Russ. Math. Surv. 57, 43–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tokarzewski, S., Andrianov, I., Danishevsky, V., Starushenko, G.: Analytical continuation of asymptotic expansion of effective transport coefficients by Pade approximants. Nonlinear Anal. 47, 2283–2292 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  44. Torquato, S., Stillinger, F.H.: Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2634–2672 (2010)

    MathSciNet  Google Scholar 

  45. Valent, G., Van Assche, W.: The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material. J. Comput. Appl. Math. 65, 419–447 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Van Assche, W.: The impact of Stieltjes work on continued fractions and orthogonal polynomials. In: van Dijk, G. (ed.) Thomas Jan Stieltjes Oeuvres Complètes - Collected Papers, pp. 5–37. Springer, Berlin (1993). Report number: OP-SF 9 Jul 1993

    Google Scholar 

  47. Wall, H.S.: Analytic Theory of Continued Fractions. Chelsea Publishing Company, Bronx, NY (1948)

    MATH  Google Scholar 

  48. Yukalov, V., Gluzman, S.: Self-similar exponential approximants. Phys. Rev. E. 58, 1359–1382 (1998)

    Article  Google Scholar 

  49. Yukalov, V., Gluzman, S.: Self similar crossover in statistical physics. Phys. A 273, 401–415 (1999)

    Article  Google Scholar 

  50. Yukalov, V.I., Gluzman, S., Sornette, D.: Summation of power series by self-similar factor approximants. Phys. A 328, 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Leonid Berlyand for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Mityushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gluzman, S., Mityushev, V., Nawalaniec, W., Starushenko, G. (2016). Effective Conductivity and Critical Properties of a Hexagonal Array of Superconducting Cylinders. In: Pardalos, P., Rassias, T. (eds) Contributions in Mathematics and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31317-7_13

Download citation

Publish with us

Policies and ethics