Towards Automatic Screening of Idiopathic Scoliosis Using Low-Cost Commodity Sensors—Validation Study

  • Dejan DimitrijevićEmail author
  • Đorđe Obradović
  • Marko Jocić
  • Zečević Igor
  • Petar Bjeljac
  • Vladimir Todorović
  • Jelena Dimitrijević
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 445)


This paper presents some preliminary validation study results pertaining to our ongoing attempts to develop a noninvasive scoliosis and other spine disorder automated diagnostic solution implemented using commodity sensors only, thus limiting its overall cost, but still achieving adequate precision. The cost of many such commercial solutions is prohibitive to have them acquired and used by student healthcare institutes in countries such as Serbia, thus we are developing a low-cost one. If proven effective our solutions will be open-sourced.


Automated scoliosis screening Commodity sensors Low-cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bunnell, W.P.: An Objective Criterion for Scoliosis Screening, JBJS (1984).Google Scholar
  2. 2.
    Editorials: Referrals from Scoliosis Screenings - American Family Physician (2001).Google Scholar
  3. 3.
    Nash, C.L., Gregg, E.C., Brown, R.H., Pillai, K.: Risks of exposure to X-rays in patients undergoing long-term treatment for scoliosis. J. Bone Joint Surg. Am. 61, 371–374 (1979).Google Scholar
  4. 4.
    Takasaki, H.: Moire Topography. Jpn J Appl Phys Suppl. 14–1 (1975).Google Scholar
  5. 5.
    Adair, I.V., Van Wijk, M.C., Armstrong, G.W.: Moiré topography in scoliosis screening. Clin. Orthop. 165–171 (1977).Google Scholar
  6. 6.
    Willner, S.: Moiré topography--a method for school screening of scoliosis. Arch. Orthop. Trauma. Surg. Arch. Für Orthop. Unf.-Chir. 95, 181–185 (1979).Google Scholar
  7. 7.
    Laulund, T., Søjbjerg, J.O., Hørlyck, E.: Moiré topography in school screening for structural scoliosis. Acta Orthop. Scand. 53, 765–768 (1982).Google Scholar
  8. 8.
    Frobin, W., Hierholzer, E.: Analysis of human back shape using surface curvatures. J. Biomech. 15, 379–390 (1982).Google Scholar
  9. 9.
    Drerup, B., Hierholzer, E.: Objective determination of anatomical landmarks on the body surface: Measurement of the vertebra prominens from surface curvature. J.Biomech. (1985)Google Scholar
  10. 10.
    Patias, P., Grivas, T.B., Kaspiris, A., Aggouris, C., Drakoutos, E.: A review of the trunk surface metrics used as Scoliosis and other deformities evaluation indices. Scoliosis. (2010).Google Scholar
  11. 11.
    Mínguez, M.F., et al.: Quantifier variables of the back surface deformity obtained with a noninvasive structured light method: evaluation of their usefulness in idiopathic scoliosis diagnosis. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 16, 73–82 (2007).Google Scholar
  12. 12.
    Jocić, M., Dimitrijević, D., Pantović, M., Madić, D., Konjović, Z.: Linear Fuzzy Space Based Scoliosis Screening. ICIST 2014.Google Scholar
  13. 13.
    Projekat SpineLab 2014 - YouTube,
  14. 14.
    Djokic, Z., Stojanovic, M.: Morphologic characteristics and postural status in children aged 9 to 12 years in Sremska Mitrovica municipality. Gen. Pract. 16, 41–49 (2010).Google Scholar
  15. 15.
    Torell, G., Nordwall, A., Nachemson, A.: The changing pattern of scoliosis treatment due to effective screening. J Bone Jt. Surg Am. 63, 337–341 (1981).Google Scholar
  16. 16.
    Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on User interface software and technology. pp. 559–568. ACM (2011).Google Scholar
  17. 17.
    DIERS digiscan - Foot Podoscope,
  18. 18.
    Adams, W.: Lectures on the pathology and treatment of lateral and other forms of curvature of the spine. Churchill (1882).Google Scholar
  19. 19.
    Franko, O.I., Bray, C., Newton, P.O.: Validation of a scoliometer smartphone app to assess scoliosis. J. Pediatr. Orthop. 32, e72–75 (2012).Google Scholar
  20. 20.
  21. 21.
  22. 22.
    Abyarjoo, F., Barreto, A., Cofino, J., Ortega, F.R.: Implementing a Sensor Fusion Algorithm for 3D Orientation Detection with Inertial/Magnetic Sensors. In: Sobh, T. and Elleithy, K. (eds.) Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering. pp. 305–310. Springer International Publishing (2015).Google Scholar
  23. 23.
    Bartlett, H.L., Ting, L.H., Bingham, J.T.: Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture. 39, 224–228 (2014).Google Scholar
  24. 24.
  25. 25.
    Doria, D.: RANSAC Plane Fitting for VTK. VTK J. ISSN 2328-3459. (2010).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dejan Dimitrijević
    • 1
    Email author
  • Đorđe Obradović
    • 1
  • Marko Jocić
    • 1
  • Zečević Igor
    • 1
  • Petar Bjeljac
    • 1
  • Vladimir Todorović
    • 1
  • Jelena Dimitrijević
    • 2
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Institute for Student HealthcareNovi SadSerbia

Personalised recommendations