Reducing Computation Time by Monte Carlo Method: An Application in Determining Axonal Orientation Distribution Function

  • Nicolás F. LoriEmail author
  • Rui Lavrador
  • Lucia Fonseca
  • Carlos Santos
  • Rui Travasso
  • Artur Pereira
  • Rosaldo Rossetti
  • Nuno Sousa
  • Victor Alves
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 445)


Diffusion MRI (dMRI) is highly sensitive in detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter (WM) anatomy using tractography, thus being an important component of health informatics. In clinical settings, the computation time is critical, and so finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI) dMRI data processing is extremely relevant. We analyse here a method for reducing the computation of the dMRI-based axonal orientation distribution function h by using a Monte Carlo sampling-based methods for voxel selection, and so obtained a reduction in required data sampling of about 20 %. In this work we show that the convergence to the correct value in this type of dMRI data-processing is linear and not exponential, implying that the Monte Carlo approach in this type of dMRI data processing improves its speed, but further improvements are needed.


White matter Diffusion MRI Monte Carlo sampling methods Optimization Axonal ODF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96: 10422–10427. (1999).Google Scholar
  2. 2.
    Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 15: 494―515. (2002).Google Scholar
  3. 3.
    Tuch, D.S. Q-ball imaging. Magn Reson Med 52: 1358– 1372. (2004).Google Scholar
  4. 4.
    Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34: 144–155. (2007).Google Scholar
  5. 5.
    Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41: 1267–1277. (2008).Google Scholar
  6. 6.
    Raffelt, D., Tournier, J.D., Rose, S., Ridgway G.R., Henderson, R., et al. Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59: 3976–3994. (2012).Google Scholar
  7. 7.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi. F., et al. The geometric structure of the brain fiber pathways. Science 335: 1628–1634. (2012).Google Scholar
  8. 8.
    Dani, A., Huang, B., Bergan, J., Dulac, C., Zhuang, X. Superresolution Imaging of Chemical Synapses in the Brain. Neuron 68: 843–856. (2010).Google Scholar
  9. 9.
    Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489: 391–399. (2012).Google Scholar
  10. 10.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J. DMRI of Complex Neural Architecture. Neuron 40: 885–895. (2003).Google Scholar
  11. 11.
    Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., Markram, H. Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci U S A 109: E2885–94. (2012).Google Scholar
  12. 12.
    Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J. Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Proc Intl Soc Mag Reson Med 15: 3720. (2007).Google Scholar
  13. 13.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J. AxCaliber: A method for measuring axon diameter distribution from dMRI. Magn Reson Med 59: 1347–1354. (2008).Google Scholar
  14. 14.
    Milne, M.L., Conradi, M.S. Multi-exponential signal decay from diffusion in a single compartment. J Magn Reson 197: 87– 90. (2009).Google Scholar
  15. 15.
    U.C.L.A. (n.d.) LONI Image Data Archive (IDA). Available: Accessed 16 November 2012. (2012)
  16. 16.
    Zhang, Y., Brady, M., Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20: 45–57. (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicolás F. Lori
    • 1
    Email author
  • Rui Lavrador
    • 2
  • Lucia Fonseca
    • 3
    • 4
    • 5
  • Carlos Santos
    • 2
  • Rui Travasso
    • 2
    • 3
  • Artur Pereira
    • 6
  • Rosaldo Rossetti
    • 7
  • Nuno Sousa
    • 8
  • Victor Alves
    • 1
  1. 1.Algoritmi CentreUniversity of MinhoBragaPortugal
  2. 2.Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Center for Physics Computation (CFC), Faculty of Science and TechnologyUniversity of CoimbraCoimbraPortugal
  4. 4.Maastricht UniversityMaastrichtNetherlands
  5. 5.Eindhoven University of TechnologyEindhovenNetherlands
  6. 6.IETTAUniversity of AveiroAveiroPortugal
  7. 7.LIACUniversity of PortoPortoPortugal
  8. 8.3B’sUniversity of MinhoBragaPortugal

Personalised recommendations