The Brans-Dicke Theory and Its Experimental Tests

  • Martin P. McHughEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)


Carl Brans submitted his doctoral dissertation to the Princeton committee in May of 1961. By November, the Brans-Dicke theory was disseminated widely with the publication of a 10-page paper in Physical Review. An extension of Einstein’s general relativity, it generated great interest and was the subject of enormous effort to test its implications experimentally. We examine the history and impact of the experimental tests of this theory.


Very Long Baseline Interferometry Solar Neutrino Gravitational Radiation Binary Pulsar Lunar Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.H. Dicke, New research on old gravitation. Science 129, 621 (1959)ADSCrossRefGoogle Scholar
  2. 2.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R.H. Dicke, Principle of equivalence and the weak interactions. Rev. Mod. Phys. 29, 355 (1957)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R.H. Dicke, W.F. Hoffmann, R. Krotkov, Tracking and Orbit Requirements for Experiment to Detect Variations in Gravitational Constant, in Proceedings of the Second International Space Science Symposium, Florence, pp. 287–291, 10–14 April 1961Google Scholar
  5. 5.
    I.I. Shapiro, W.B. Smith, M.B. Ash, R.P. Ingalls, Gordon H. Pettengill, Gravitational Constant, Experimental bound on its time variation. Phys. Rev. Lett. 26, 27 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    A. Finzi, Test of possible variations of the gravitational constant by the observation of white dwarfs within galactic clusters. Phys. Rev. 128, 2012 (1962)ADSCrossRefGoogle Scholar
  7. 7.
    R.H. Dicke, The Theoretical Significance of Experimental Relativity (Gordon and Breach, New York, 1964)zbMATHGoogle Scholar
  8. 8.
    P.G. Roll, R. Krotkov, R.H. Dicke, The equivalence of inertial and passive gravitational mass. Ann. Phys. (N.Y.) 26, 442 (1964)Google Scholar
  9. 9.
    R.H. Dicke, in Mach’s Principle and Equivalence, ed. by C. Møller. Evidence for Gravitational Theories: Proceedings of Course 20 of the International School of Physics Enrico Fermi (Academic, New York, 1962), pp. 1-49Google Scholar
  10. 10.
    H. Robert, Dicke Papers, Box 4, Folder 5; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  11. 11.
    H. Robert, Dicke Papers, Box 5 Folder 1; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  12. 12.
    K. Nordtvedt Jr., The equivalence principle for massive bodies. I. Phenomenology, Phys. Rev. 169, 1014 (1968)Google Scholar
  13. 13.
    K. Nordtvedt Jr., The equivalence principle for massive bodies. II. Theory, Phys. Rev. 169, 1017 (1968)Google Scholar
  14. 14.
    K. Nordtvedt Jr., Testing relativity with laser ranging to the moon. Phys. Rev. 170, 1186 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    C.O. Alley, P.L. Bender, R.H. Dicke, J.E. Faller, P.A. Franken, H.H. Plotkin, D.T. Wilkinson, Optical radar using a corner reflector on the moon. J. Geophys. Res. 70, 2267 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    H. Robert, Dicke Papers, Box 19 Folder 17; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  17. 17.
    C.O. Alley et al., University of Maryland Proposal, 13 December 1965Google Scholar
  18. 18.
    P.L. Bender, D.G. Currie, R.H. Dicke, D.H. Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, E.C. Silverberg, D.T. Wilkinson, C.O. Alley, The lunar laser ranging experiment. Science 182, 229 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    H. Robert, Dicke Papers, Box 19 Folder 3; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  20. 20.
    J.G. Williams et al., New test of the equivalence principle from lunar laser ranging. Phys. Rev. Lett. 36, 551 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Merkowitz, Tests of gravity using lunar laser ranging. Living Rev. Relativ. 13, 7 (2010). (cited on 23/11/2015)
  22. 22.
    Texas Mauritanian Eclipse Team, Gravitational deflection of light: solar eclipse of 30 June 1973 I. Description of procedures and final results. Astron. J. 81 (1976) 452Google Scholar
  23. 23.
    E.B. Fomalont, R.A. Sramek, A confirmation of Einstein’s general theory of relativity by measuring the bending of microwave radiation in the gravitational field of the Sun. Ap. J. 199, 749 (1975)Google Scholar
  24. 24.
    S.B. Lambert, C. Le Poncin-Lafitte, Improved determination of \(\gamma \) by VLBI. Astron. Astro- phys. 529, A70 (2011). doi: 10.1051/0004-6361/201016370 ADSCrossRefGoogle Scholar
  25. 25.
    S. Newcomb, The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy, (p. 111) Supplement to the American Ephemeris and Nautical Almanac for 1897, Government Printing Office, Washington (1895)Google Scholar
  26. 26.
    H. Robert, Dicke Papers, Box 33; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  27. 27.
    R. Weiss, Private communication (Nov. 18, 2010)Google Scholar
  28. 28.
    R.H. Dicke, The sun’s rotation and relativity. Nature 202, 432 (1964)Google Scholar
  29. 29.
    R.H. Dicke, H.M. Goldenberg, Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313 (1967)Google Scholar
  30. 30.
    R.H. Dicke, H.M. Goldenberg, The oblateness of the sun. Astrophys. J. Supp. 27, 131 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    H. Robert, Dicke Papers, Box 4, Folder 2; Department of Rare Books and Special Collections, Princeton University LibraryGoogle Scholar
  32. 32.
    H.A. Hill, P.D. Clayton, D.L. Patz, A.W. Healy, Solar oblateness, excess brightness, and relativity. Phys. Rev. Lett. 33, 1497 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    N. Weiss, Solar seismology. Nature 259, 78 (1976)ADSGoogle Scholar
  34. 34.
    J. Christensen-Dalsgaard, Helioseismology. Rev. Mod. Phys. 74, 1073 (2002)Google Scholar
  35. 35.
    J.R. Kuhn, K.G. Libbrecht, R.H. Dicke, Solar ellipticity fluctuations yield no evidence of g-modes. Nature 319, 128 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    I.I. Shapiro, A fourth test of general relativity. Phys. Rev. Lett. 13, 789 (1964)Google Scholar
  37. 37.
    I.I. Shapiro, G.H. Pettengill, M.E. Ash, M.L. Stone, W.B. Smith, R.P. Ingalls, R.A. Brockelman, Fourth test of general relativity: preliminary results. Phys. Rev. Lett. 20, 1265 (1968)ADSCrossRefGoogle Scholar
  38. 38.
    R.D. Reasenberg et al., Viking relativity experiment—verification of signal retardation by solar gravity. Ap. J. 234, L219 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    L.I. Schiff, Possible new experimental test of general relativity theory. Phys Rev. Lett. 4, 215 (1960)ADSCrossRefGoogle Scholar
  40. 40.
    R.F. O’Connell, Schiff’s proposed gyroscope experiment as a test of the scalar-tensor theory of general relativity. Phys. Rev. Lett. 20, 69 (1968)ADSCrossRefGoogle Scholar
  41. 41.
    C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    R. Weiss, B. Block, A gravimeter to monitor the OSO mode of the earth. J. Geophys. Res. 70, 5615 (1965)Google Scholar
  43. 43.
    R. Weiss, Electromagetically Coupled Broadband Gravitational Antenna. Quarterly Progress Report, Research Laboratory of Electronics, MIT, vol. 105, p. 54 (1972)Google Scholar
  44. 44.
  45. 45.
    J.H. Taylor, J.M. Weisberg, A test of general relativity: gravitational radiation and the binary pulsar PSR 1913+16. Ap. J. 253, 908 (1982)ADSCrossRefGoogle Scholar
  46. 46.
    P.J.E. Peebles, L.A. Page, Jr., R.B. Partridge, Finding the Big Bang (Cambridge University Press, Cambridge, 2009)Google Scholar
  47. 47.
    A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Ap. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  48. 48.
    R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic blackbody radiation. Ap. J. 142, 414 (1965)ADSCrossRefGoogle Scholar
  49. 49.
    J.N. Bahcall, S. Neutrinos, Phys. Rev. Lett. 17, 398 (1966)ADSCrossRefGoogle Scholar
  50. 50.
    C.M. Will, Theory and Experiment in Gravitational Physics, revised edn. (Cambridge University Press, Cambridge, 1993)Google Scholar
  51. 51.
    C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). (cited on 23/11/2015)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Loyola UniversityNew OrleansUSA

Personalised recommendations