Skip to main content

Rotating Boson Stars

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 183))

Abstract

Recently, experimental evidence has been accumulated that fundamental scalar fields, like the Higgs boson, exist in Nature. The gravitational collapse of such a boson cloud would lead to a boson star (BS) as a new type of a compact object. Similarly as for white dwarfs and neutron stars (NSs), there exist a limiting mass, the Kaup limit, below which a BS is stable against complete gravitational collapse to a black hole (BH). Depending the self-interaction of the basic scalars, one can distinguish mini-, axi-dilaton, soliton, charged, oscillating and rotating BSs. Their compactness normally prevents a Newtonian approximation, however, modifications of general relativity (GR), as in the case of Jordan-Brans-Dicke theory, would provide them with gravitational memory. Balance between the quantum pressure due to Heisenberg’s uncertainty principle and gravity permits the existence of a completely stable branch of spherically symmetric configurations. Moreover, as a coherent state, like the vortices of Bose-Einstein condensates, it allows for rotating solutions with quantized angular momentum. In this review, we concentrate on the fascinating possibility of weakening the BH uniqueness theorem for rotating configurations and soliton-type collisions of excited BSs. (Dedicated to Carl Brans’ 80th birthday, the author’s professor at Princeton in the fall of 1973, then lecturing on complex relativity).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    One motivation is that extended inflation models based on BD theory explain the completion of the phase transition in a more natural manner, without fine-tuning.

  2. 2.

    It is also related to bifurcations [36] of effective higher order curvature Lagrangians.

  3. 3.

    In Ref. [28], the BS is composed from several complex scalars which are in the same ground state of a ’t Hooft-Polyakov type monopole configuration. Complications due to a possible dependence on the azimuthal angle \(\varphi \) are there avoided by averaging the energy-momentum tensor, leaving merely an angular momentum term in the field equations.

References

  1. P. Bizoń, A. Wasserman, On existence of mini-boson stars. Commun. Math. Phys. 215, 357 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C. Brans, Non-linear Lagrangians and the significance of the metric. Class. Quantum Grav. 5, L197 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. Castañeda Valle, E.W. Mielke, Solitonic axion condensates modeling dark matter halos. Ann. Phys. 336, 245 (2013)

    Google Scholar 

  5. D. Castañeda Valle, E.W. Mielke, Increased infall velocities in galaxy clusters from solitonic collisions? Phys. Rev. D 89, 043504, 1–5 (2014)

    Google Scholar 

  6. J. Cen, P. Yuan, S. Xue, Observation of the optical and spectral characteristics of ball lightning. Phys. Rev. Lett. 112, 035001 (2014)

    Google Scholar 

  7. M. Colpi, S.L. Shapiro, I. Wasserman, Boson stars: gravitational equilibria of self-interacting scalar fields. Phys. Rev. Lett. 57, 2485 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115, 211102 (2015)

    Google Scholar 

  9. F. Eisenhauer et al., GRAVITY: observing the universe in motion. The Messenger 143, 16 (2011)

    Google Scholar 

  10. D.A. Feinblum, W.A. McKinley, Stable states of a scalar particle in its own gravitational field. Phys. Rev. 168, 1445 (1968)

    Article  ADS  Google Scholar 

  11. P.C.C. Freire, N. Wex, G. Esposito-Farèse, J.P.W. Verbiest, M. Bailes, B.A. Jacoby, M. Kramer, I.d H. Stairs, J. Antoniadis, G.H. Janssen, The relativistic pulsar–white dwarf binary PSR J1738+0333 II. The most stringent test of scalar–tensor gravity. Mon. Not. R. Astron. Soc. 423, 3328–3343 (2012)

    Google Scholar 

  12. R. Ferrell, M. Gleiser, Gravitational atoms: Gravitational radiation from excited boson stars. Phys. Rev. D 40, 2524 (1989)

    Article  ADS  Google Scholar 

  13. P. Grandclément, C. Somé, E. Gourgoulhon, Models of rotating boson stars and geodesics around them: new type of orbits. Phys. Rev. D. 90, 024068 (2014)

    Article  ADS  Google Scholar 

  14. C.A.R. Herdeiro, E. Radu, A new spin on black hole hair. Int. J. Mod. Phys. D 23, 1442014 (2014)

    Article  ADS  MATH  Google Scholar 

  15. C.A.R. Herdeiro, E. Radu, Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D 24, 1542014 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. Higgs, Evading the Goldstone Theorem (Nobel Lecture, 8 December 2013). Int. J. Mod. Phys. A 30, 1530021 (2015)

    Article  ADS  MATH  Google Scholar 

  17. D.I. Kaiser, When fields collide. Sci. Am. 296N6, 41–47 (2007)

    Google Scholar 

  18. D.J. Kaup, Klein-Gordon geon. Phys. Rev. 172, 1331 (1968)

    Article  ADS  Google Scholar 

  19. R.P. Kerr, Rotating black holes and the Kerr metric. in Relativistic Astrophysics, 5th Sino-Italian Workshop, eds. by D.–S. Lee, W. Lee, S.–S. Xue, AIP Conference Proceedings, vol 1059, 9–12 (2008)

    Google Scholar 

  20. F.V. Kusmartsev, E.W. Mielke, F.E. Schunck, Gravitational stability of boson stars. Phys. Rev. D 43, 3895 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. D. Lee, Y. Pang, Stability of miniboson stars. Nucl. Phys. B. 315, 477 (1989)

    Google Scholar 

  22. S.L. Liebling, C. Palenzuela, Dynamical boson stars. Living Rev. Relativ. 15, 6 (2012)

    Article  ADS  MATH  Google Scholar 

  23. V.S. Manko, E.W. Mielke, J.D. Sanabria-Gómez, Exact solution for the exterior field of a rotating neutron star. Phys. Rev. D 61, R081501 (2000)

    Article  ADS  Google Scholar 

  24. E.W. Mielke, Conformal changes of metrics and the initial-value problem of general relativity. Gen. Rel. Grav. 8, 321 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E.W. Mielke, Affine generalization of the Komar complex of general relativity, Phys. Rev. D63, 044018 (2001) 1 (2001)

    Google Scholar 

  26. E.W. Mielke, Gamma rays from boson anti-boson star mergers, in Proceedings of the ICGA-5, Gravitation and Cosmology Supplements, vol.8, Supplement II N2 (ICGA-5 Proceedings), pp. 111–113 (2002)

    Google Scholar 

  27. E.W. Mielke, Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys. Lett. B 702, 187–190 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.W. Mielke, R. Scherzer, Geon-type solutions of the nonlinear Heisenberg-Klein-Gordon equation. Phys. Rev. D 24, 2111 (1981)

    Article  ADS  Google Scholar 

  29. E.W. Mielke, F.E. Schunck, Rotating boson stars. in Gravity, Particles and Space-Time, eds. by P. Pronin, G. Sardanashvily, (World Scientific: Singapore 1996), pp. 391–420

    Google Scholar 

  30. E.W. Mielke, F.E. Schunck, Boson stars: alternatives to primordial black holes? Nucl. Phys. B 564, 185 (2000)

    Article  ADS  Google Scholar 

  31. E.W. Mielke, F.E. Schunck, Are axidilaton stars massive compact halo objects? Gen. Rel. Grav. 33, 805 (2001)

    Article  ADS  MATH  Google Scholar 

  32. J.L. Miller, The Higgs particle, or something much like it, has been spotted. Phys. Today 65(9), 12 (2012)

    Google Scholar 

  33. P. Parsons, 3-Minute Einstein: Digesting His Life, Theories and Influence in 3-minute Morsels, Foreword by John Gribbin (Apple Press, 2011)

    Google Scholar 

  34. D. Pugliese, H. Quevedo, J.A. Rueda, R. Ruffini, On charged boson stars. Phys. Rev. D 88, 024053 (2013)

    Google Scholar 

  35. R. Ruffini, S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767 (1969)

    Article  ADS  Google Scholar 

  36. F.E. Schunck, F.V. Kusmartsev, E.W. Mielke, Dark matter problem and effective curvature Lagrangians. Gen. Rel. Grav. 37(8), 1427–1433 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. F.E. Schunck, E.W. Mielke, Rotating boson stars, in Proceedings of the Bad Honnef Workshop Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, eds. by F.W. Hehl, R.A . Puntigam, H. Ruder, (Springer-Verlag, Berlin, 1996), pp 8–11; 138–151

    Google Scholar 

  38. F.E. Schunck, E.W. Mielke, Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A 249, 389 (1998)

    Article  ADS  Google Scholar 

  39. F.E. Schunck, E.W. Mielke, TOPICAL REVIEW: general relativistic boson stars. Class. Quantum Gravity 20, R301–R356 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. F.E. Schunck, B. Fuchs, E.W. Mielke, Scalar field haloes as gravitational lenses. Mon. Not. R. Astron. Soc. 369, 485–491 (2006)

    Google Scholar 

  41. C. Somé, P. Grandclément, E. Gourgoulhon, A characterization of 3+1 spacetimes via the Simon-Mars tensor, arXiv:1412.6542 (2014)

  42. Y.-F. Yuan, R. Narayan, M.J. Rees, Constraining alternate models of black holes: type I X-ray bursts on accreting fermion-fermion and boson-fermion stars. Astrophys. J. 606, 1112 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, E.W. (2016). Rotating Boson Stars. In: Asselmeyer-Maluga, T. (eds) At the Frontier of Spacetime. Fundamental Theories of Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-31299-6_6

Download citation

Publish with us

Policies and ethics