Advertisement

Rotating Boson Stars

  • Eckehard W. MielkeEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)

Abstract

Recently, experimental evidence has been accumulated that fundamental scalar fields, like the Higgs boson, exist in Nature. The gravitational collapse of such a boson cloud would lead to a boson star (BS) as a new type of a compact object. Similarly as for white dwarfs and neutron stars (NSs), there exist a limiting mass, the Kaup limit, below which a BS is stable against complete gravitational collapse to a black hole (BH). Depending the self-interaction of the basic scalars, one can distinguish mini-, axi-dilaton, soliton, charged, oscillating and rotating BSs. Their compactness normally prevents a Newtonian approximation, however, modifications of general relativity (GR), as in the case of Jordan-Brans-Dicke theory, would provide them with gravitational memory. Balance between the quantum pressure due to Heisenberg’s uncertainty principle and gravity permits the existence of a completely stable branch of spherically symmetric configurations. Moreover, as a coherent state, like the vortices of Bose-Einstein condensates, it allows for rotating solutions with quantized angular momentum. In this review, we concentrate on the fascinating possibility of weakening the BH uniqueness theorem for rotating configurations and soliton-type collisions of excited BSs. (Dedicated to Carl Brans’ 80th birthday, the author’s professor at Princeton in the fall of 1973, then lecturing on complex relativity).

Keywords

Black Hole Dark Matter Higgs Boson Scalar Field Einstein Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Bizoń, A. Wasserman, On existence of mini-boson stars. Commun. Math. Phys. 215, 357 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. Brans, Non-linear Lagrangians and the significance of the metric. Class. Quantum Grav. 5, L197 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. Castañeda Valle, E.W. Mielke, Solitonic axion condensates modeling dark matter halos. Ann. Phys. 336, 245 (2013)Google Scholar
  5. 5.
    D. Castañeda Valle, E.W. Mielke, Increased infall velocities in galaxy clusters from solitonic collisions? Phys. Rev. D 89, 043504, 1–5 (2014)Google Scholar
  6. 6.
    J. Cen, P. Yuan, S. Xue, Observation of the optical and spectral characteristics of ball lightning. Phys. Rev. Lett. 112, 035001 (2014)Google Scholar
  7. 7.
    M. Colpi, S.L. Shapiro, I. Wasserman, Boson stars: gravitational equilibria of self-interacting scalar fields. Phys. Rev. Lett. 57, 2485 (1986)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115, 211102 (2015)Google Scholar
  9. 9.
    F. Eisenhauer et al., GRAVITY: observing the universe in motion. The Messenger 143, 16 (2011)Google Scholar
  10. 10.
    D.A. Feinblum, W.A. McKinley, Stable states of a scalar particle in its own gravitational field. Phys. Rev. 168, 1445 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    P.C.C. Freire, N. Wex, G. Esposito-Farèse, J.P.W. Verbiest, M. Bailes, B.A. Jacoby, M. Kramer, I.d H. Stairs, J. Antoniadis, G.H. Janssen, The relativistic pulsar–white dwarf binary PSR J1738+0333 II. The most stringent test of scalar–tensor gravity. Mon. Not. R. Astron. Soc. 423, 3328–3343 (2012)Google Scholar
  12. 12.
    R. Ferrell, M. Gleiser, Gravitational atoms: Gravitational radiation from excited boson stars. Phys. Rev. D 40, 2524 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    P. Grandclément, C. Somé, E. Gourgoulhon, Models of rotating boson stars and geodesics around them: new type of orbits. Phys. Rev. D. 90, 024068 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C.A.R. Herdeiro, E. Radu, A new spin on black hole hair. Int. J. Mod. Phys. D 23, 1442014 (2014)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    C.A.R. Herdeiro, E. Radu, Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D 24, 1542014 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    P. Higgs, Evading the Goldstone Theorem (Nobel Lecture, 8 December 2013). Int. J. Mod. Phys. A 30, 1530021 (2015)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    D.I. Kaiser, When fields collide. Sci. Am. 296N6, 41–47 (2007)Google Scholar
  18. 18.
    D.J. Kaup, Klein-Gordon geon. Phys. Rev. 172, 1331 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    R.P. Kerr, Rotating black holes and the Kerr metric. in Relativistic Astrophysics, 5th Sino-Italian Workshop, eds. by D.–S. Lee, W. Lee, S.–S. Xue, AIP Conference Proceedings, vol 1059, 9–12 (2008)Google Scholar
  20. 20.
    F.V. Kusmartsev, E.W. Mielke, F.E. Schunck, Gravitational stability of boson stars. Phys. Rev. D 43, 3895 (1991)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    T. D. Lee, Y. Pang, Stability of miniboson stars. Nucl. Phys. B. 315, 477 (1989)Google Scholar
  22. 22.
    S.L. Liebling, C. Palenzuela, Dynamical boson stars. Living Rev. Relativ. 15, 6 (2012)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    V.S. Manko, E.W. Mielke, J.D. Sanabria-Gómez, Exact solution for the exterior field of a rotating neutron star. Phys. Rev. D 61, R081501 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    E.W. Mielke, Conformal changes of metrics and the initial-value problem of general relativity. Gen. Rel. Grav. 8, 321 (1977)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    E.W. Mielke, Affine generalization of the Komar complex of general relativity, Phys. Rev. D63, 044018 (2001) 1 (2001)Google Scholar
  26. 26.
    E.W. Mielke, Gamma rays from boson anti-boson star mergers, in Proceedings of the ICGA-5, Gravitation and Cosmology Supplements, vol.8, Supplement II N2 (ICGA-5 Proceedings), pp. 111–113 (2002)Google Scholar
  27. 27.
    E.W. Mielke, Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys. Lett. B 702, 187–190 (2011)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E.W. Mielke, R. Scherzer, Geon-type solutions of the nonlinear Heisenberg-Klein-Gordon equation. Phys. Rev. D 24, 2111 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    E.W. Mielke, F.E. Schunck, Rotating boson stars. in Gravity, Particles and Space-Time, eds. by P. Pronin, G. Sardanashvily, (World Scientific: Singapore 1996), pp. 391–420Google Scholar
  30. 30.
    E.W. Mielke, F.E. Schunck, Boson stars: alternatives to primordial black holes? Nucl. Phys. B 564, 185 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    E.W. Mielke, F.E. Schunck, Are axidilaton stars massive compact halo objects? Gen. Rel. Grav. 33, 805 (2001)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    J.L. Miller, The Higgs particle, or something much like it, has been spotted. Phys. Today 65(9), 12 (2012)Google Scholar
  33. 33.
    P. Parsons, 3-Minute Einstein: Digesting His Life, Theories and Influence in 3-minute Morsels, Foreword by John Gribbin (Apple Press, 2011)Google Scholar
  34. 34.
    D. Pugliese, H. Quevedo, J.A. Rueda, R. Ruffini, On charged boson stars. Phys. Rev. D 88, 024053 (2013)Google Scholar
  35. 35.
    R. Ruffini, S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    F.E. Schunck, F.V. Kusmartsev, E.W. Mielke, Dark matter problem and effective curvature Lagrangians. Gen. Rel. Grav. 37(8), 1427–1433 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    F.E. Schunck, E.W. Mielke, Rotating boson stars, in Proceedings of the Bad Honnef Workshop Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, eds. by F.W. Hehl, R.A . Puntigam, H. Ruder, (Springer-Verlag, Berlin, 1996), pp 8–11; 138–151Google Scholar
  38. 38.
    F.E. Schunck, E.W. Mielke, Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A 249, 389 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    F.E. Schunck, E.W. Mielke, TOPICAL REVIEW: general relativistic boson stars. Class. Quantum Gravity 20, R301–R356 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    F.E. Schunck, B. Fuchs, E.W. Mielke, Scalar field haloes as gravitational lenses. Mon. Not. R. Astron. Soc. 369, 485–491 (2006)Google Scholar
  41. 41.
    C. Somé, P. Grandclément, E. Gourgoulhon, A characterization of 3+1 spacetimes via the Simon-Mars tensor, arXiv:1412.6542 (2014)
  42. 42.
    Y.-F. Yuan, R. Narayan, M.J. Rees, Constraining alternate models of black holes: type I X-ray bursts on accreting fermion-fermion and boson-fermion stars. Astrophys. J. 606, 1112 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana IztapalapaMexico, D.F.Mexico

Personalised recommendations