Advertisement

Axion and Dilaton + Metric Emerge Jointly from an Electromagnetic Model Universe with Local and Linear Response Behavior

  • Friedrich W. HehlEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)

Abstract

We take a quick look at the different possible universally coupled scalar fields in nature. Then, we discuss how the gauging of the group of scale transformations (dilations), together with the Poincaré group, leads to a Weyl-Cartan spacetime structure. There the dilaton field finds a natural surrounding. Moreover, we describe shortly the phenomenology of the hypothetical axion field. In the second part of our essay, we consider a spacetime, the structure of which is exclusively specified by the premetric Maxwell equations and a fourth rank electromagnetic response tensor density \(\chi ^{ijkl}= -\chi ^{jikl}= -\chi ^{ijlk}\) with 36 independent components. This tensor density incorporates the permittivities, permeabilities, and the magneto-electric moduli of spacetime. No metric, no connection, no further property is prescribed. If we forbid birefringence (double-refraction) in this model of spacetime, we eventually end up with the fields of an axion, a dilaton, and the 10 components of a metric tensor with Lorentz signature. If the dilaton becomes a constant (the vacuum admittance) and the axion field vanishes, we recover the Riemannian spacetime of general relativity theory. Thus, the metric is encapsulated in \(\chi ^{ijkl}\), it can be derived from it.

Keywords

Maxwell Equation Weyl Group Light Cone Tensor Density Dilaton Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was partly supported by the German-Israeli Research Foundation (GIF) by the grant GIF/No. 1078-107.14/2009. I am grateful to Claus Kiefer (Cologne) for helpful remarks re Higgs cosmology, to Yuri Obukhov (Moscow) re questions of torsion and of the Hadamard method, to Helmut Rumpf (Vienna) re the Mukhanov bound of \(10^{-29}\,\mathrm{{m}}\), and to Volker Perlick (Bremen) re gravity versus electromagnetism and what is more fundamental. I would like to thank Ari Sihvola and Ismo Lindell (both Espoo/Helsinki) and Alberto Favaro (London) for the permission to use the image in Fig.2. Many useful comments on a draft of this paper were supplied by Hubert Goenner (Göttingen), Yakov Itin (Jerusalem), Claus Lämmerzahl (Bremen), Ecardo Mielke (Mexico City), Wei-Tou Ni (Hsinchu), Erhard Scholz (Wuppertal), Frederic Schuller (Erlangen), and Dirk Puetzfeld (Bremen). I am grateful to Alan Kostelecký (Bloomington) for a last-minute exchange of emails.

References

  1. 1.
    P.A.R. Ade et al. [Polarbear Collaboration], Polarbear constraints on cosmic birefringence and primordial magnetic fields. Phys. Rev. D 92, 123509 (2015). arXiv.org:1509.02461
  2. 2.
    D.N. Astrov, Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 13, 729–733 (1961) (Zh. Eksp. Teor. Fiz. 40, 1035–1041 (1961))Google Scholar
  3. 3.
    P. Baekler, A. Favaro, Y. Itin, F.W. Hehl, The Kummer tensor density in electrodynamics and in gravity. Annals Phys. (NY) 349, 297–324 (2014). arXiv.org:1403.3467 Google Scholar
  4. 4.
    A.B. Balakin, W.T. Ni, Non-minimal coupling of photons and axions. Class. Quant. Grav. 27, 055003 (2010). arXiv.org:0911.2946 Google Scholar
  5. 5.
    A.O. Barut, R. Raçzka, Theory of Group Representations and Applications (PWN-Polish Scientific, Warsaw, 1977)zbMATHGoogle Scholar
  6. 6.
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. JCAP 0912, 003 (2009). arXiv.org:0904.1698
  7. 7.
    F. Bezrukov, M. Shaposhnikov, Inflation, LHC and the Higgs boson. Comptes Rendus Physique 16, 994–1002 (2015). http://dx.doi.org/10.1016/j.crhy.2015.08.005 Google Scholar
  8. 8.
    M. Blagojević, Gravitation and Gauge Symmetries (IoP, Bristol, 2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    M. Blagojević, F.W. Hehl (eds.), Gauge Theories of Gravitation, a Reader with Commentaries (Imperial College Press, London, 2013)zbMATHGoogle Scholar
  10. 10.
    C.H. Brans, Gravity and the tenacious scalar field, in On Einstein’s Path, Essays in Honor of E. Schucking, ed. by A. Harvey (Springer, New York, 1999), Chap. 9, pp. 121–138. arXiv.org:gr-qc/9705069 Google Scholar
  11. 11.
    C.H. Brans, The roots of scalar-tensor theory: an approximate history, presented during the 1st Internat. Workshop on Gravitation and Cosmology, 31 May–4 Jun 2004, Santa Clara, Cuba 2004. arXiv.org:gr-qc/0506063
  12. 12.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C.G. Callan Jr., S.R. Coleman, R. Jackiw, A new improved energy-momentum tensor. Annals Phys. (NY) 59, 42–73 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    O. Castillo-Felisola, C. Corral, S. Kovalenko, I. Schmidt, V.E. Lyubovitskij, Axions in gravity with torsion. Phys. Rev. D 91, 085017 (2015). arXiv.org:1502.03694
  15. 15.
    J.M. Charap, W. Tait, A gauge theory of the Weyl group. Proc. R. Soc. Lond. A 340, 249–262 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C.M. Chen, J.M. Nester, R.S. Tung, Gravitational energy for GR and Poincaré gauge theories: a covariant Hamiltonian approach. Int. J. Mod. Phys. D 24, 1530026 (2015). arXiv.org:1507.07300 Google Scholar
  17. 17.
    D.H. Delphenich, On linear electromagnetic constitutive laws that define almost-complex structures. Annalen Phys. (Berlin) 16, 207–217 (2007). arXiv.org:gr-qc/0610031 Google Scholar
  18. 18.
    D.H. Delphenich, Pre-metric Electromagnetism, electronic book, 410 pp. http://www.neo-classical-physics.info/ (2009)
  19. 19.
    D. Delphenich, Pre-metric electromagnetism as a path to unification. arXiv.org:1512.05183
  20. 20.
    R.H. Dicke, The Theoretical Significance of Experimental Relativity (Blackie & Son, London, 1964)Google Scholar
  21. 21.
    P. Di Vecchia, R. Marotta, M. Mojaza, J. Nohle, The story of the two dilatons (2015). arXiv.org:1512.03316
  22. 22.
    A. Einstein, Eine neue formale Deutung der Maxwellschen Feldgleichungen der Elektrodynamik (A New Formal Interpretation of Maxwell’s Field Equations of Electrodynamics) (Sitzungsber. Königl. Preuss. Akad. Wiss., Berlin, 1916), pp. 184–188; see also A.J. Kox et al. (eds.), The Collected Papers of Albert Einstein, vol. 6 (Princeton University Press, Princeton, 1996), pp. 263–269Google Scholar
  23. 23.
    A. Einstein, The Meaning of Relativity, 5th edn. (Princeton University Press, Princeton, 1955) (first published in 1922)Google Scholar
  24. 24.
    A. Favaro, Recent advances in classical electromagnetic theory. Ph.D. thesis, Imperial College London (2012)Google Scholar
  25. 25.
    A. Favaro, Private communication (2015)Google Scholar
  26. 26.
    A. Favaro, L. Bergamin, The non-birefringent limit of all linear, skewonless media and its unique light-cone structure. Annalen Phys. (Berlin) 523, 383–401 (2011). arXiv.org:1008.2343 Google Scholar
  27. 27.
    A. Favaro, F.W. Hehl, Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points. Phys. Rev. A 93, 013844 (2016). arXiv.org:1510.05566
  28. 28.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol.II: Mainly Electromagnetism and Matter (Addison-Wesley, Reading, 4th Printing 1969)Google Scholar
  29. 29.
    D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  30. 30.
    Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  31. 31.
    D. Giulini, The rich structure of Minkowski space, in Minkowski Spacetime: A Hundred Years Later, ed. by V. Petkov. Fundamental Theories of Physics (Springer), vol. 165, pp. 83–132 (2010). arXiv.org:0802.4345 Google Scholar
  32. 32.
    H. Goenner, Some remarks on the genesis of scalar-tensor theories. Gen. Rel. Grav. 44, 2077–2097 (2012). arXiv.org:1204.3455 Google Scholar
  33. 33.
    Z. Haghani, N. Khosravi, S. Shahidi, The Weyl-Cartan Gauss-Bonnet gravity, Class. Quant. Grav. 32, 215016 (2015). arXiv.org:1410.2412 Google Scholar
  34. 34.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Progress in metric-affine gauge theories of gravity with local scale invariance. Found. Phys. 19, 1075–1100 (1989)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    F.W. Hehl, Yu.N Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Birkhäuser, Boston, 2003)Google Scholar
  36. 36.
    F.W. Hehl, Yu.N. Obukhov, Spacetime Metric from Local and Linear Electrodynamics: A New Axiomatic Scheme. Lecture Notes in Physics (Springer), vol. 702, pp. 163–187 (2006). arXiv.org:gr-qc/0508024
  37. 37.
    F.W. Hehl, Yu.N. Obukhov, J.P. Rivera, H. Schmid, Relativistic nature of a magnetoelectric modulus of Cr\(_{2}\) O\(_{3}\) crystals: a four-dimensional pseudoscalar and its measurement. Phys. Rev. A 77, 022106 (2008). arXiv.org:0707.4407
  38. 38.
    Y. Itin, No-birefringence conditions for spacetime. Phys. Rev. D 72, 087502 (2005). arXiv.org:hep-th/0508144
  39. 39.
    Y. Itin, Photon propagator for axion electrodynamics. Phys. Rev. D 76, 087505 (2007). arXiv.org:0709.1637
  40. 40.
    Y. Itin, On light propagation in premetric electrodynamics. Covariant dispersion relation. J. Phys. A 42, 475402 (2009). arXiv.org:0903.5520
  41. 41.
    Y. Itin, Dispersion relation for anisotropic media. Phys. Lett. A 374, 1113–1116 (2010). arXiv.org:0908.0922
  42. 42.
    Y. Itin, Y. Friedman, Backwards on Minkowski’s road. From 4D to 3D Maxwellian electromagnetism. Annalen Phys. (Berlin) 17, 769–786 (2008). arXiv.org:0807.2625 Google Scholar
  43. 43.
    Y. Itin, F.W. Hehl, Is the Lorentz signature of the metric of space-time electromagnetic in origin? Annals Phys. (NY) 312, 60–83 (2004). arXiv.org:gr-qc/0401016 Google Scholar
  44. 44.
    Y. Itin, C. Lämmerzahl, V. Perlick, Finsler-type modification of the Coulomb law. Phys. Rev. D 90, 124057 (2014). arXiv.org:1411.2670
  45. 45.
    H.A. Kastrup, On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Annalen Phys. (Berlin) 17, 631–690 (2008). arXiv.org:0808.2730 Google Scholar
  46. 46.
    R.M. Kiehn, G.P. Kiehn, J.B. Roberds, Parity and time-reversal symmetry breaking, singular solutions, and Fresnel surfaces. Phys. Rev. A 43, 5665–5671 (1991)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    W. Kopczyński, J.D. McCrea, F.W. Hehl, The Weyl group and its currents. Phys. Lett. A 128, 313–317 (1988)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    V.A. Kostelecký, N. Russell, J. Tasson, Constraints on torsion from bounds on Lorentz violation. Phys. Rev. Lett. 100, 111102 (2008). arXiv.org:0712.4393
  49. 49.
    K. Küpfmüller, W. Mathis, A. Reibiger, Theoretische Elektrotechnik, 19th edn. (Springer Vieweg, Berlin, 2013)CrossRefGoogle Scholar
  50. 50.
    C. Lämmerzahl, F.W. Hehl, Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics. Phys. Rev. D 70, 105022 (2004). arXiv.org:gr-qc/0409072
  51. 51.
    C. Lämmerzahl, V. Perlick, W. Hasse, Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D 86, 104042 (2012). arXiv.org:1208.0619
  52. 52.
    O.L. de Lange, R.E. Raab, Multipole theory and the Hehl-Obukhov decomposition of the electromagnetic constitutive tensor. J. Math. Phys. 56, 053502 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    A. Lasenby, M. Hobson, Scale-invariant gauge theories of gravity: theoretical foundations (2015). arXiv.org:1510.06699
  54. 54.
    I.V. Lindell, Electromagnetic wave equation in differential-form representation. Progr. Electromagn. Res. (PIER) 54, 321–333 (2005)CrossRefGoogle Scholar
  55. 55.
    I.V. Lindell, Multiforms, Dyadics, and Electromagnetic Media, IEEE Press, Wiley, Hoboken, 2015)Google Scholar
  56. 56.
    I.V. Lindell, Plane-wave propagation in electromagnetic PQ medium. Progr. Electromagn. Res. (PIER) 154, 23–33 (2015)CrossRefGoogle Scholar
  57. 57.
    I.V. Lindell, A. Favaro, Decomposition of electromagnetic Q and P media. Progr. Electromagn. Res. B (PIER B) 63, 79–93 (2015)CrossRefGoogle Scholar
  58. 58.
    I.V. Lindell, A. Sihvola, Perfect electromagnetic conductor. J. Electromagn. Waves Appl. 19, 861–869 (2005). arXiv.org:physics/0503232 Google Scholar
  59. 59.
    J. Łopuszánski, An Introduction to Symmetry and Supersymmetry in Quantum Field Theory (World Scientific, Singapore, 1991)Google Scholar
  60. 60.
    E.W. Mielke, Spontaneously broken topological \(SL(5, R)\) gauge theory with standard gravity emerging. Phys. Rev. D 83, 044004 (2011)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    E.W. Mielke, Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys. Lett. B 702, 187–190 (2011)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    E.W. Mielke, Symmetry breaking in topological quantum gravity. Int. J. Mod. Phys. D 22, 1330009 (2013)ADSCrossRefzbMATHGoogle Scholar
  63. 63.
    E.W. Mielke, F.W. Hehl, J.D. McCrea, Belinfante type invariance of the Noether identities in a Riemannian and a Weitzenböck spacetime. Phys. Lett. A 140, 368–372 (1989)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    E.W. Mielke, E.S. Romero, Cosmological evolution of a torsion-induced quintaxion. Phys. Rev. D 73, 043521 (2006)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    V. Mukhanov, Physics Colloquium, University of Bonn on 2013 May 17Google Scholar
  66. 66.
    Y. Nakayama, Scale invariance vs conformal invariance. Phys. Rep. 569, 1–93 (2015). arXiv.org:1302.0884 Google Scholar
  67. 67.
    W.-T. Ni, A Non-metric Theory of Gravity, (Montana State University, Bozeman, 1973). http://astrod.wikispaces.com/
  68. 68.
    W.-T. Ni, Equivalence principles and electromagnetism. Phys. Rev. Lett. 38, 301–304 (1977)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    W.-T. Ni, Equivalence principles and precision experiments, in Precision Measurement and Fundamental Constants II, ed. by B.N. Taylor, W.D. Phillips. Natl. Bur. Stand. (US) Spec. Publ. 617, 647–651 (1984). http://astrod.wikispaces.com/
  70. 70.
    W.-T. Ni, Dilaton field and cosmic wave propagation. Phys. Lett. A 378, 3413–3418 (2014). arXiv.org:1410.0126 Google Scholar
  71. 71.
    W.T. Ni, Spacetime structure and asymmetric metric from the premetric formulation of electromagnetism. Phys. Lett. A 379, 1297–1303 (2015). arXiv.org:1411.0460 Google Scholar
  72. 72.
    W.-T. Ni, S.-S. Pan, H.-C. Yeh, L.-S. Hou, J. Wan, Search for an axionlike spin coupling using a paramagnetic salt with a dc SQUID. Phys. Rev. Lett. 82, 2439 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    Yu.N. Obukhov, Poincaré gauge gravity: Selected topics. Int. J. Geom. Meth. Mod. Phys. 3, 95–138 (2006). arXiv.org:gr-qc/0601090 Google Scholar
  74. 74.
    Y.N. Obukhov, T. Fukui, G.F. Rubilar, Wave propagation in linear electrodynamics. Phys. Rev. D 62, 044050 (2000). arXiv.org:gr-qc/0005018
  75. 75.
    Yu.N. Obukhov, F.W. Hehl, On possible skewon effects on light propagation. Phys. Rev. D 70, 125015 (2004). arXiv.org:physics/0409155
  76. 76.
    Yu.N. Obukhov, D. Puetzfeld, Equations of motion in scalar-tensor theories of gravity: a covariant multipolar approach. Phys. Rev. D 90, 104041 (2014). arXiv.org:1404.6977
  77. 77.
    Yu.N. Obukhov, G.F. Rubilar, Fresnel analysis of the wave propagation in nonlinear electrodynamics. Phys. Rev. D 66, 024042 (2002). arXiv.org:gr-qc/0204028
  78. 78.
    V. Perlick, On the hyperbolicity of Maxwell’s equations with a local constitutive law. J. Math. Phys. 52, 042903 (2011). arXiv:1011.2536 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    V. Perlick, Private communication (2015)Google Scholar
  80. 80.
    E.J. Post, Formal Structure of Electromagnetics—General Covariance and Electromagnetics (North Holland, Amsterdam, 1962) (Dover, Mineola, 1997)Google Scholar
  81. 81.
    D. Puetzfeld, Y.N. Obukhov, Equations of motion in metric-affine gravity: a covariant unified framework. Phys. Rev. D 90, 084034 (2014). arXiv:1408.5669 ADSCrossRefGoogle Scholar
  82. 82.
    D. Puetzfeld, Y.N. Obukhov, Equivalence principle in scalar-tensor gravity. Phys. Rev. D 92, 081502(R) (2015). arXiv.org:1505.01285
  83. 83.
    R.E. Raab, A.H. Sihvola, On the existence of linear non-reciprocal bi-isotropic (NRBI) media. J. Phys. A 30, 1335–1344 (1997)ADSCrossRefzbMATHGoogle Scholar
  84. 84.
    G.F. Rubilar, Linear pre-metric electrodynamics and deduction of the light cone. Annalen Phys. (Berlin) 11, 717–782 (2002). arXiv.org:0706.2193 Google Scholar
  85. 85.
    C. Schaefer, Einführung in Die Theoretische Physik, vol.3, Part 1 (de Gruyter, Berlin, 1932)Google Scholar
  86. 86.
    E. Scholz, Higgs and gravitational scalar fields together induce Weyl gauge. Gen. Rel. Grav. 47(7) (2015). arXiv.org:1407.6811
  87. 87.
    E. Scholz, MOND-like acceleration in integrable Weyl geometric gravity. Found. Phys. 46, 176–208 (2016). arXiv.org:1412.0430 Google Scholar
  88. 88.
    J.A. Schouten, Tensor Analysis for Physicists, corr. 2nd edn. (Clarendon Press, Oxford, 1959) (Dover, New York, 1989)Google Scholar
  89. 89.
    E. Schrödinger, Space-Time Structure (Cambridge University Press, Cambridge, 1954)zbMATHGoogle Scholar
  90. 90.
    F.P. Schuller, C. Witte, M.N.R. Wohlfarth, Causal structure and algebraic classification of area metric spacetimes in four dimensions. Ann. Phys. (NY) 325, 1853–1883 (2010). arXiv.org:0908.1016
  91. 91.
    A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, Electromagnetics of Bi-anisotropic Materials. Theory and Applications (Gordon and Breach, Amsterdam, 2001)Google Scholar
  92. 92.
    E. Shamonina, L. Solymar, Metamaterials: How the subject started. Metamaterials 1, 12–18 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    A. Sihvola, I.V. Lindell, Perfect electromagnetic conductor medium. Ann. Phys. (Berlin) 17, 787–802 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    A. Sihvola, Private communication (2015)Google Scholar
  95. 95.
    E. Tonti, The Mathematical Structure of Classical and Relativistic Physics: a general classification diagram (Birkhäuser/Springer, New York, 2013)CrossRefzbMATHGoogle Scholar
  96. 96.
    C. Truesdell, R.A. Toupin, The classical field theories, in Encyclopedia of Physics, vol. III/1, ed. by S. Flügge (Springer, Berlin, 1960), pp. 226–793Google Scholar
  97. 97.
    V. Vennin, J. Martin, C. Ringeval, Cosmic inflation and model comparison. Comptes Rendus Physique 16, 960–968 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    S. Weinberg, The Quantum Theory of Fields. Volume II: Modern Applications (Cambridge University Press, Cambridge, 1996)Google Scholar
  99. 99.
    F. Wilczek, Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    P. Russer, Electromagnetics, Microware Circuit and Antenna Design for Communications Engineering, 2nd edn. (Artech House, Norwood, MA, 2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany
  2. 2.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations