Advertisement

A New Estimate of the Mass of the Gravitational Scalar Field for Dark Energy

  • Yasunori FujiiEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)

Abstract

A new estimate of the mass of the pseudo dilaton is offered by following the fundamental nature that a massless Nambu-Goldstone boson, called a dilaton, in the Einstein frame acquires a nonzero mass through the loop effects which occur with the Higgs field in the relativistic quantum field theory as described by poles of D, spacetime dimensionality off the physical value \(D=4\). Naturally the technique of dimensional regularization is fully used to show this pole structure to be suppressed to be finite by what is called a Classical-Quantum-Interplay, to improve our previous attempt. Basically the same analysis is extended to derive also the coupling of a pseudo dilaton to two photons.

Keywords

Dark Energy Dimensional Regularization Higgs Field Jordan Frame Dirac Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author expresses his sincere thanks to K. Homma, H. Itoyama, C.S. Lim, K. Maeda, T. Tada and T. Yoneya for many useful discussions.

References

  1. 1.
    Y. Fujii, K. Maeda, The Scalar-Tensor Theory (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  2. 2.
    Y. Fujii, Entropy. 14, 1997 (2012). www.mdpi.com/journal/entropy
  3. 3.
    P. Jordan, Schwerkraft und Weltall (Friedrich Vieweg und Sohn, Braunschweig, 1955)Google Scholar
  4. 4.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.G. Rises et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); D.N. Spergel et al., Astrophys. J. 517, 565 (1999); D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)Google Scholar
  6. 6.
    D. Dolgov, An attempt to get rid of the cosmological constant, in The Very Early Universe, Proceedings of Nuffield Workshop, ed. by G.W. Gibbons, S.T. Siklos (Cambridge Univeristy Press. Cambridge, 1982)Google Scholar
  7. 7.
    Y. Fujii, Prog. Theor. Phys. 118, 983 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Nambu, Phys. Rev. Lett. 4, 380 (1960)Google Scholar
  9. 9.
    J. Goldstone, Nuovo Cim. 19, 154 (1961)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev 122, 345 (1961)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Fujii, Nat. Phys. Sci. 234, 5 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Fujii, K. Homma, Prog. Theor. Phys. 126, 531 (2011); Prog. Theor. Exp. Phys. 2014, 089203, K. Homma et al. Prog. Theor. Exp. Phys. 2014, 083C01Google Scholar
  13. 13.
    G. ’t Hooft, M. Veltman, Nucl. Phys. 44, 189 (1972); K. Chikashige, Y. Fujii, Prog. Theor. Phys. 57, 623; 1038 (1977); Y. Fujii, Dimensional regularization and hyperfunctions, in Particles and Fields, ed. by D. Bohl, A. Kamal (Plenum Press, New York, 1977)Google Scholar
  14. 14.
    J. O’Hanlon, Phys. Rev. Lett. 29, 137 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    K. Maeda, Y. Fujii, Phys. Rev. D 79, 084026 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Salam, J. Strathdee, Phys. Rev. 184, 1760 (1969)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    The ATLAS Collaboration, Phys. Lett. B 716, 1 (2012) (The CMS Collaboration. Phys. Lett. B 716, 30 (2012))Google Scholar
  18. 18.
    M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Advanced Research Institute for Science and EngineeringWaseda University, OkuboShinjuku-ku, TokyoJapan

Personalised recommendations