Advertisement

Mach’s Principle and the Origin of Inertia

  • Bahram MashhoonEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)

Abstract

The current status of Mach’s principle is discussed within the context of general relativity. The inertial properties of a particle are determined by its mass and spin, since these characterize the irreducible unitary representations of the inhomogeneous Lorentz group. The origin of the inertia of mass and intrinsic spin are discussed and the inertia of intrinsic spin is studied via the coupling of intrinsic spin with rotation. The implications of spin-rotation coupling and the possibility of history dependence and nonlocality in relativistic physics are briefly mentioned.

Keywords

Inertial Frame Minkowski Spacetime Lorentz Invariance World Line Inertial Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Einstein, The Meaning of Relativity (Princeton University Press, Princeton, NJ, 1955)zbMATHGoogle Scholar
  2. 2.
    C.H. Brans, Phys. Rev. 125, 388 (1962)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.H. Brans, Phys. Rev. Lett. 39, 856 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Mach, The Science of Mechanics (Open Court, La Salle, 1960)zbMATHGoogle Scholar
  6. 6.
    J. Barbour, H. Pfister (eds.), Mach’s Principle: From Newton’s Bucket to Quantum Gravity, Einstein Studies 6 (Birkhäuser, Boston, 1995)Google Scholar
  7. 7.
    B. Mashhoon, P.S. Wesson, Mach’s principle and higher-dimensional dynamics. Ann. Phys. (Berlin) 524, 63 (2012), arXiv:1106.6036 [gr-qc]
  8. 8.
    J. Barbour, Ann. Phys. (Berlin) 524, A39 (2012), arXiv:1108.3057 [gr-qc]
  9. 9.
    B. Mashhoon, P.S. Wesson, Ann. Phys. (Berlin) 524, A44 (2012), arXiv:1108.3059 [gr-qc]
  10. 10.
    H. Lichtenegger, B. Mashhoon, Mach’s Principle, in The Measurement of Gravitomagnetism: A Challenging Enterprise, ed. by L. Iorio (NOVA Science, Hauppage, NY, 2007), Chap. 2. arXiv:physics/0407078 [physics.hist-ph]
  11. 11.
    I.B. Cohen, The Birth of a New Physics (Doubleday Anchor Books, Garden City, NY, 1960)Google Scholar
  12. 12.
    B. Mashhoon, F.W. Hehl, D.S. Theiss, Gen. Relativ. Gravit. 16, 711 (1984)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Mashhoon, Complementarity of absolute and relative motion. Phys. Lett. A 126, 393 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    B. Mashhoon, Found. Phys. Lett. 6, 545 (1993)MathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Mashhoon, in Directions in General Relativity: Papers in Honor of Dieter Brill, ed. by B.L. Hu, T.A. Jacobson (Cambridge University Press, Cambridge, UK, 1993), pp. 182–194Google Scholar
  16. 16.
    B. Mashhoon, Nuovo Cimento B 109, 187 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    H.A. Lorentz, Nature 112, 103 (1923)ADSCrossRefGoogle Scholar
  18. 18.
    K. Schwab, N. Bruckner, R.E. Packard, Nature 386, 585 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    F. Riehle, Th. Kisters, A. Witte, J. Helmcke, Ch.J. Bordé, Phys. Rev. Lett. 67, 177 (1991)Google Scholar
  20. 20.
    T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    B. Dubetsky, M.A. Kasevich, Phys. Rev. A 74, 023615 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Phys. Rev. Lett. 111, 083001 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    E.P. Wigner, Ann. Math. 40, 149 (1939)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S.A. Werner, J.-L. Staudenmann, R. Collela, Phys. Rev. Lett. 42, 1103 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    G.F. Moorhead, G.I. Opat, Class. Quantum Grav. 13, 3129 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    H. Rauch, S.A. Werner, Neutron Interferometry, 2nd edn. (Oxford University Press, Oxford, UK, 2015)CrossRefGoogle Scholar
  28. 28.
    B. Mashhoon, Phys. Rev. Lett. 61, 2639 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    B. Mashhoon, Phys. Lett. A 198, 9 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    B. Mashhoon, R. Neutze, M. Hannam, G.E. Stedman, Phys. Lett. A 249, 161 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    B. Mashhoon, H. Kaiser, Inertia of intrinsic spin. Phys. B 385–386, 1381 (2006), arXiv:quantum-ph/0508182
  32. 32.
    F.W. Hehl, W.-T. Ni, Phys. Rev. D 42, 2045 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    L. Ryder, J. Phys. A 31, 2465 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    D. Singh, G. Papini, Nuovo Cimento B 115, 223 (2000)ADSGoogle Scholar
  35. 35.
    G. Papini, Phys. Rev. D 65, 077901 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    A. Randono, Phys. Rev. D 81, 024027 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    U.D. Jentschura, J.H. Noble, J. Phys. A: Math. Theor. 47, 045402 (2014)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    B. Mashhoon, Lect. Notes Phys. 702, 112 (2006), arXiv:hep-th/0507157
  39. 39.
    B. Demirel, S. Sponar, Y. Hasegawa, Measurement of the spin-rotation coupling in neutron polarimetry. New J. Phys. 17, 023065 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. Matsuo, J. Ieda, E. Saitoh, S. Maekawa, Effects of mechanical rotation on spin currents. Phys. Rev. Lett. 106, 076601 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    M. Matsuo, J. Ieda, E. Saitoh, S. Maekawa, Spin-dependent inertial force and spin current in accelerating systems. Phys. Rev. B 84, 104410 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    M. Matsuo, J. Ieda, K. Harii, E. Saitoh, S. Maekawa, Mechanical generation of spin current by spin-rotation coupling. Phys. Rev. B 87, 180402(R) (2013)ADSCrossRefGoogle Scholar
  43. 43.
    M. Matsuo, J. Ieda, S. Maekawa, Renormalization of spin-rotation coupling. Phys. Rev. B 87, 115301 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    J. Ieda, M. Matsuo, S. Maekawa, Theory of mechanical spin current generation via spin-rotation coupling. Solid State Commun. 198, 52 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    D. Chowdhury, B. Basu, Effect of spin rotation coupling on spin transport. Ann. Phys. 339, 358 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    J.-Q. Shen, S.-L. He, Geometric phases of electrons due to spin-rotation coupling in rotating C60 molecules. Phys. Rev. B 68, 195421 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    J.R.F. Lima, F. Moraes, The combined effect of inertial and electromagnetic fields in a fullerene molecule. Eur. Phys. J. B 88, 63 (2015)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Hamada, T. Yokoyama, S. Murakami, Spin current generation and magnetic response in carbon nanotubes by the twisting phonon mode. Phys. Rev. B 92, 060409(R) (2015)ADSCrossRefGoogle Scholar
  49. 49.
    G. Papini, Spin currents in non-inertial frames. Phys. Lett. A 377, 960 (2013)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    P.J. Allen, Am. J. Phys. 34, 1185 (1966)ADSCrossRefGoogle Scholar
  51. 51.
    B. Mashhoon, Phys. Lett. A 139, 103 (1989)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    B. Mashhoon, Optics of rotating systems. Phys. Rev. A 79, 062111 (2009), arXiv:0903.1315 [gr-qc]
  53. 53.
    B. Mashhoon, Nonlocal Special Relativity: Amplitude Shift in Spin-Rotation Coupling, in Proceedings of Mario Novello’s 70th Anniversary Symposium, ed. by N. Pinto Neto, S.E. Perez Bergliaffa (Editora Livraria da Fisica, Sao Paulo, 2012), pp. 177–189, arXiv:1204.6069 [gr-qc]
  54. 54.
    K.Y. Bliokh, Y. Gorodetski, V. Kleiner, E. Hasman, Phys. Rev. Lett. 101, 030404 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    K.Y. Bliokh, J. Opt. A: Pure Appl. Opt. 11, 094009 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    K.Y. Bliokh, A. Aiello, J. Opt. 15, 014001 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    N. Ashby, Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003), http://www.livingreviews.org/lrr-2003-1
  58. 58.
    P.A. Schilpp, Albert Einstein: Philosopher-Scientist (Library of Living Philosophers, Evanston, Illinois, 1949)zbMATHGoogle Scholar
  59. 59.
    B. Mashhoon, The hypothesis of locality in relativistic physics. Phys. Lett. A 145, 147 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    B. Mashhoon, Limitations of spacetime measurements. Phys. Lett. A 143, 176 (1990)ADSCrossRefGoogle Scholar
  61. 61.
    B. Mashhoon, Nonlocal theory of accelerated observers. Phys. Rev. A 47, 4498 (1993)ADSCrossRefGoogle Scholar
  62. 62.
    B. Mashhoon, Phys. Rev. A 72, 052105 (2005), arXiv:hep-th/0503205
  63. 63.
    B. Mashhoon, Nonlocal special relativity. Ann. Phys. (Berlin) 17, 705 (2008), arXiv:0805.2926 [gr-qc]
  64. 64.
    F.W. Hehl, B. Mashhoon, Nonlocal gravity simulates dark matter. Phys. Lett. B 673, 279 (2009), arXiv:0812.1059 [gr-qc]
  65. 65.
    F.W. Hehl, B. Mashhoon, Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D 79, 064028 (2009), arXiv:0902.0560 [gr-qc]
  66. 66.
    B. Mashhoon, Nonlocal gravity: the general linear approximation. Phys. Rev. D 90, 124031 (2014), arXiv:1409.4472 [gr-qc]
  67. 67.
    S. Rahvar, B. Mashhoon, Observational tests of nonlocal gravity: galaxy rotation curves and clusters of galaxies. Phys. Rev. D 89, 104011 (2014), arXiv:1401.4819 [gr-qc]
  68. 68.
    V.C. Rubin, W.K. Ford, Astrophys. J. 159, 379 (1970)ADSCrossRefGoogle Scholar
  69. 69.
    M.S. Roberts, R.N. Whitehurst, Astrophys. J. 201, 327 (1975)ADSCrossRefGoogle Scholar
  70. 70.
    Y. Sofue, V. Rubin, Rotation curves of spiral galaxies. Annu. Rev. Astron. Astrophys. 39, 137 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations