Skip to main content

65 Years in and Around Relativity

  • Chapter
  • First Online:
Book cover At the Frontier of Spacetime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 183))

Abstract

At the very beginning I must thank all of the contributors to this book for taking their valuable time to add to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    And I believe so did Einstein. See the later discussion of this issue to which a good bit of my thesis was addressed.

  2. 2.

    This ultimately led to the oxymoronic phrase in my thesis title: “...variable...constant.”.

  3. 3.

    He was also concerned that since electromagnetic radiation has \(T=0\), an electromagnetic radiation field would not contribute as a source for \(\phi .\) This question was shoved aside and not further investigated, I believe.

  4. 4.

    Since then I have done work which turned out to be on both sides of this phenomenon.

  5. 5.

    In fact some 20 years later inflationary cosmology was to lead to renewed interest in the addition of a classical scalar field to the metric.

  6. 6.

    There can be no global non-zero vector field on \(S^4\) for topological reasons, and thus no Minkowski signature metric.

  7. 7.

    Of course in the spherical case the “radial” coordinate is not indefinitely continuable because it is essentially an angular one. However, this is not the sort of coordinate anomaly we are addressing here and can certainly be accommodated in standard models.

  8. 8.

    However there are explicit metrics on Milnor’s exotic \(S^7\) [72], and it is known that a Riemannian metric exists on any smooth \(\mathbb {R}^4.\) The Lorentz signature case is different however, since the existence of a nowhere zero timelike vector would result in a smooth foliation of the manifold which would then reduce it to standard, so \(\mathbb {R}\times \mathbb {R}^3=\mathbb {R}^4\), and thus any such metric must have a singularity.

  9. 9.

    Here we do not distinguish between a fermionic quantum field and a fermion.

References

  1. L. Steen, J. Seebach, Counterexamples in Topology (Holt, Rinehart and Winston, 1970)

    MATH  Google Scholar 

  2. C. Brans, On Unified Field Theories. Undergraduate thesis, Loyola University (1957) (Unpublished)

    Google Scholar 

  3. P. Dirac, Proc. Roy. Soc. (London) Al65, 199 (1938)

    Google Scholar 

  4. J. Barbour, H. Pfister (ed.), Mach’s Principle v. 6 of Einstein Studies (Birkauser, 1995)

    Google Scholar 

  5. D. Sciama, Month. Not. Royal Astron. Soc. 113, 34 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Brans, Mach’s principle and the locally measured gravitational constant in general relativity. Phys. Rev. 125, 388 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Roll, R. Krotkov, R. Dicke, Ann. Phys. 26, 442 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Brans, Mach’s principle and a relativistic theory of gravitation, II. Phys. Rev. 125, 2194 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P. Jordan, Schwerkrft und Weltall (Vieweg, 1955)

    Google Scholar 

  10. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. E. Poisson, C. Will, Gravity (Cambridge, 2014)

    Google Scholar 

  12. C. Brans, Mach’s Principle and a Varying Gravitational Constant. Ph.D. thesis, Princeton University (1961) (Unpublished)

    Google Scholar 

  13. R.H. Dicke, Phys. Rev. 125, 2163 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  14. R.H. Dicke, The Theoretical Significance of Experimental Relativity (Gordon and Breach, 1964)

    Google Scholar 

  15. C. Brans, C.H. Brans, Varying Newton’s constant: a personal history of scalar-tensor theories, in Einstein Online, vol. 4, 1002 (2010)

    Google Scholar 

  16. C. Brans, Jordan-Brans-Dicke (2014), http://www.scholarpedia.org/article/Jordan-Brans-Dicke-Theory

  17. E. Schucking, Phys. Today 52, 26 (1999)

    Article  Google Scholar 

  18. C. Brans, Invariant approach to the geometry of spaces in general relativity. J. Math. Phys. 6, 94 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A.Z. Petrov, Einstein Spaces (Pergamon Press) English translation from Russian (1969)

    Google Scholar 

  20. A. Petrov, Sci. Not. Kazan 114, 55 (1954)

    Google Scholar 

  21. C. Brans, A computer program for the non-numerical testing and reduction of sets of algebraic partial differential equations. J. Assoc. Comp. Mach. 14, 45 (l967)

    Google Scholar 

  22. C. Brans, Invariant representation of all analytic Petrov type III solutions to the Einstein equations. J. Math. Phys. 11, 1210 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  23. H-J. Schmidt, Consequences of the non-compactness of the Lorentz group. Int. J. Theo. Phys. 37, 691 (1998)

    Google Scholar 

  24. C. Brans, Complex two-form representation of the Einstein equations, the Petrov type III solutions. J. Math. Phys. 12, 1616 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. C. Brans, Complex bundle structure and the Einstein equations. Bull. A.P.S. 19, 508 (1974)

    Google Scholar 

  26. C. Brans, Complex structures and representations of the Einstein equations. J. Math. Phys. 15, 1559 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Thorpe, J. Math. Phys. 10, 1 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Brans, Singularities in bootstrap gravitational geons. Phys. Rev. 140B, 1174 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Komar, Phys. Rev. 137, B462 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Brans, Some restrictions on algebraically general vacuum metrics. J. Math. Phys. 16, 1008 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. C. Brans, Complete integrability conditions of the Einstein-Petrov equations, type I. J. Math. Phys. 18, 1378 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R.H. Dicke, P. Peebles, P.G. Roll, D.T. Wilkinson, Ap. J. 142, 414 (1965)

    Article  ADS  Google Scholar 

  33. A.A. Penzias, R.W. Wilson, Ap. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  34. C. Brans, Propagations of electromagnetic polarization effects in anisotropic cosmologies. Ap. J. 197, 1 (1975)

    Article  ADS  Google Scholar 

  35. A. Einstein, The Meaning of Relativity (Princeton, 1950)

    Google Scholar 

  36. C. Brans, Absence of inertial induction in general relativity. Phys. Rev. Lett. 39, 856 (1977)

    Article  ADS  Google Scholar 

  37. V. Varadarajan, Geometry of Quantum Theory (Van Nostrand, 1978)

    Google Scholar 

  38. A. Marlow (ed.), Mathematical Foundations of Quantum Theory (Academic Press, 1978)

    Google Scholar 

  39. C. Brans, D.R. Stewart, Unaccelerated-returning-twin paradox in flat space-time. Phys. Rev. D 8, 1662 (1973)

    Article  ADS  Google Scholar 

  40. J. Bell, Physics 1, 195 (1964)

    Google Scholar 

  41. C. Brans, Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219 (1988)

    Article  Google Scholar 

  42. D. Mermin, Rev. Mod. Phys. 65, 803 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  43. K. deRaedt et al., Eur. Phys. J. B 53, 139 (2006)

    Google Scholar 

  44. C. Brans, Consistency of field equations in ‘self-creation’ cosmologies. Gen. Relat. Grav. 19, 949 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. G. Barber, Gen. Rel. Grav. 14, 117 (1982)

    Google Scholar 

  46. M. Ferraris et al., Class. Quant. Grav. 5, L95 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Magnan, Gen. Rel. Grav. 19, 465 (1987)

    Article  ADS  Google Scholar 

  48. C. Brans, Non-linear Lagrangians and the significance of the metric. Class. Quantum Grav. 5, L197 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C. Brans, Gravity and the tenacious scalar field, in On Einstein’s Path, Essays in honor of Engelbert Schücking, ed. by A. Harvey. (Springer, Berlin, 1998), pp. 121–138, arXiv:gr-qc/9705069

    Google Scholar 

  50. C. Brans, The roots of scalar-tensor theory: an approximate history, in Proceedings of International Workshop on Gravitation and Cosmology, Santa Clara, Cuba (2004), arXiv:gr-qc/0506063

  51. Y. Fujii, K-I. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge, 2003)

    Google Scholar 

  52. R. Dicke, Rev. Mod. Phys. 29, 363 (1957)

    Google Scholar 

  53. P. Bergmann, Ann. Math. 49, 255 (1948)

    Article  MathSciNet  Google Scholar 

  54. P. Bergmann, Int. J. Theo. Phys. 1, 25 (1968)

    Article  Google Scholar 

  55. T. Asselmeyer, C. Brans, Book: Exotic Structures and Physics: Differential Topology and Spacetime Models (World Scientific Press, 2007)

    Google Scholar 

  56. R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus (American Mathematical Society, 1999)

    Google Scholar 

  57. A. Scorpan, The Wild World of 4-Manifolds (American Mathematical Society, 2005)

    Google Scholar 

  58. M. Freedman, Not. Am. Mat. Soc. 31, 3 (1984)

    ADS  Google Scholar 

  59. Daniel S. Freed, Karen K. Uhlenbeck, Instantons and Four-Manifolds (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  60. S. Donaldson, J. Diff. Geom. 18, 269 (1983)

    MathSciNet  Google Scholar 

  61. C. Brans, Gen. Rel. Grav. 34, 1767 (2002)

    Google Scholar 

  62. C. Brans, Exotic Black Holes? arXiv:gr-qc/9303035

  63. J. Milnor, Ann. Math. 64, 399 (1956)

    Article  MathSciNet  Google Scholar 

  64. M. Jammer, Concepts of Space: The History of Theories of Space in Physics, 3rd edn. (Dover, 1993)

    Google Scholar 

  65. R.E. Gompf, J. Diff. Geom. 37, 199 (1993)

    Google Scholar 

  66. M. Freedman, L. Taylor, J. Diff. Geom. 24, 69 (1986)

    MathSciNet  Google Scholar 

  67. N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994)

    Google Scholar 

  68. J. Sładkowski, Gravity on exotic \({\mathbb{R}}^{4}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. R.E. Gompf, J. Diff. Geom. 21, 283 (1985)

    MathSciNet  Google Scholar 

  70. Norman Steenrod, The Topology of Fiber Bundles (Princeton University Press, Princeton, 1951)

    MATH  Google Scholar 

  71. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  72. D. Gromoll, W. Mayer, Ann. Math. 100, 401 (1974)

    Article  Google Scholar 

  73. C. Brans, Localized exotic smoothness. Class. Quantum Grav. 11, 1785 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. D. Kotschick, Geom. Topol. 2, 1 (1998)

    Article  MathSciNet  Google Scholar 

  75. C.H. Brans, D. Randall, Exotic differentiable structures and general relativity. Gen. Rel. Grav. 25, 205 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. C. Brans, Absolulte spacetime: the twentieth century ether. Gen. Rel. Grav. 31, 597 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. C.H. Brans, Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. C.H. Brans, Localized exotic smoothness. Class. Quant. Grav. 11, 1785–1792 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. J. Sładkowski, Exotic smoothness and particle physics. Acta Phys. Polon. B 27, 1649–1652 (1996)

    Google Scholar 

  80. J. Sładkowski. Exotic smoothness, fundamental interactions and noncommutative geometry (1996), arXiv:hep-th/9610093

  81. J. Sładkowski, Exotic smoothness, noncommutative geometry and particle physics. Int. J. Theor. Phys. 35, 2075–2083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  82. T. Asselmeyer, Generation of source terms in general relativity by differential structures. Class. Quant. Grav. 14, 749–758 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. J. Sładkowski, Strongly gravitating empty spaces (1999). Preprint arXiv:gr-qc/9906037

  84. T. Asselmeyer-Maluga, C.H. Brans, Cosmological anomalies and exotic smoothness structures. Gen. Rel. Grav. 34, 1767–1771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  85. T. Asselmeyer-Maluga, J. Król, Inflation and topological phase transition driven by exotic smoothness. Adv. HEP Volume 2014:867460 (article ID) (2014), http://dx.doi.org/10.1155/2014/867460, arXiv:1401.4815

    Google Scholar 

  86. H. Pfeiffer, Quantum general relativity and the classification of smooth manifolds. Report number: DAMTP 2004–32, (2004)

    Google Scholar 

  87. T. Asselmeyer-Maluga, Exotic smoothness and quantum gravity. Class. Q. Grav. 27, 165002 (2010), arXiv:1003.5506

    Google Scholar 

  88. J. Król, A model for spacetime II. The emergence of higher dimensions and field theory/strings dualities. Found. Phys. 36, 1778 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. J. Król, A model for spacetime: the role of interpretation in some Grothendieck topoi. Found. Phys. 36, 1070 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. J. Król, Background independence in quantum gravity and forcing constructions. Found. Phys. 34, 361–403 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. J. Król, Exotic smoothness and non-commutative spaces. The model-theoretic approach. Found. Phys. 34, 843–869 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. T. Asselmeyer-Maluga, J. Król, Abelian gerbes, generalized geometries and foliations of small exotic \(R^4\) (2015), arXiv: 0904.1276v5 (subm. to Lett. Math. Phys.)

  93. T. Asselmeyer-Maluga, J. Król, Exotic smooth \(\mathbb{R}^4\) (2010), noncommutative algebras and quantization. arXiv:1001.0882

  94. T. Asselmeyer-Maluga, J. Król. Constructing a quantum field theory from spacetime ()2011, arXiv:1107.3458

  95. T. Asselmeyer-Maluga, R. Mader, Exotic \(R^4\) and quantum field theory, in 7th International Conference on Quantum Theory and Symmetries (QTS7), ed. by C. Burdik et al. (IOP Publishing. Bristol, 2012), p. 012011, doi:10.1088/1742-6596/343/1/012011, arXiv:1112.4885

    Google Scholar 

  96. V. Chernov, S. Nemirovski, Cosmic censorship of smooth structures. Comm. Math. Phys. 320, 469–473 (2013), arXiv:1201.6070

    Google Scholar 

  97. T. Asselmeyer-Maluga, J. Król, Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26, 3421–3437 (2011), arXiv:1105.1557

    Google Scholar 

  98. T. Asselmeyer-Maluga, J. Król, Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods Mod. Phys. 10(10), (2013) (will be published in November 2013), arXiv:1211.3012

  99. T. Asselmeyer-Maluga, H. Rosé, On the geometrization of matter by exotic smoothness. Gen. Rel. Grav. 44, 2825–2856 (2012), doi:10.1007/s10714-012-1419-3, arXiv:1006.2230

    Google Scholar 

  100. R. Fintushel, R. Stern, Knots, links, and 4-manifolds. Inv. Math. 134, 363–400 (1998), arXiv:dg-ga/9612014

    Google Scholar 

  101. T. Asselmeyer-Maluga, C.H. Brans, How to include fermions into general relativity by exotic smoothness. Gen. Relat. Grav. 47, 30 (2015), doi:10.1007/s10714-015-1872-x, arXiv:1502.02087

  102. T. Asselmeyer-Maluga, C.H. Brans, Smoothly Exotic Black Holes. Space Science, Exploration and Policies (NOVA Publishers, 2012), pp. 139–156

    Google Scholar 

  103. T. Asselmeyer-Maluga, J. Król, On topological restrictions of the spacetime in cosmology. Mod. Phys. Lett. A 27, 1250135 (2012), arXiv:1206.4796

  104. T. Asselmeyer-Maluga, J. Król, Decoherence in quantum cosmology and the cosmological constant. Mod. Phys. Lett. A 28, 1350158 (2013), doi:10.1142/S0217732313501587, arXiv:1309.7206

    Google Scholar 

  105. T. Asselmeyer-Maluga, J. Król, Small exotic smooth \(R^4\) and string theory, in International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, ed. by R. Bathia (Hindustan Book Agency, 2010), p. 400

    Google Scholar 

  106. T. Asselmeyer-Maluga, J. Król, Exotic smooth \(R^4\) and certain configurations of NS and D branes in string theory. Int. J. Mod. Phys. A 26, 1375–1388 (2011), arXiv: 1101.3169

    Google Scholar 

  107. T. Asselmeyer-Maluga, J. Krol, Quantum D-branes and exotic smooth \(\mathbb{R}^4\). Int. J. Geom. Methods Mod. Phys. 9, 1250022 (2012), arXiv:1102.3274

  108. T. Asselmeyer-Maluga, J. Król, Higgs potential and confinement in Yang-Mills theory on exotic \(\mathbb{R}^4\) (2013), arXiv:1303.1632

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl H. Brans .

Editor information

Editors and Affiliations

Appendix

Appendix

Here I will summarize a selected list of topics from my thesis, finished in 1960, but formally presented and accepted by Princeton in May 1961.

  • Mach’s Principle I reviewed what I knew of it, and especially what I thought Dicke assumed. This of course required a careful look at the question of how a backgrund metric would affect the motion of particles, both point and extended. So this led to the next point.

  • Equations of Motion During this time the questions associated with the equations of motion of both point and extended (fluid type) particles had been extensively studied by Einstein, Infeld, Papapetrou and others. So, in trying to confirm that I was using an operationally significant procedure for measuring and comparing inertial and gravitational mass for a given background metric. As I recall, Einstein and infeld were primarily concerned with point masses, while Papapetrou looked at fluid type stress-energy tensors.

  • How to measure “mass” I tried to settle this for inertial mass by looking at motion in an external electric field.

  • Equivalence Principles I explored both strong and weak as presented to me by Dicke.

  • Variational principles and field equations I had already presented and explored the formalism Bob and I would use to arrive at equations satisfying the oxymoronic phrase “varying ...constant.” Then, hearing of the work of Jordan and his group, I first reviewed their formalisms.

  • Static, spherically symmetric vacuum I looked at the solution in Jordan’s formulation known as the Heckmann solution, and then did the same for our formalism but in isotropic coordinates. This led to careful analysis of four qualitatively different metric forms.

  • Does \({{\varvec{G}}}\) vary? I then used various idealized operational procedure to look at what could be said about the dependence of \(G\sim 1/\phi \) on the matter distribution in the universe.

  • Boundary Conditions Of course these had to be carefully defined and were eventually defined in the usual way in terms of some “going to zero or other constant at infinity” procedure.

  • Cosmology I could find no exact analog to the FRW metric of the Einstein equations, so I simple did some very extensive power series expansions for each of various ranges of arbitrary constants. A very few of you may recall that at that time we were amazed to have a human driven mechanical computer that could both multiply and divide long numbers within 10 s or so.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brans, C.H. (2016). 65 Years in and Around Relativity. In: Asselmeyer-Maluga, T. (eds) At the Frontier of Spacetime. Fundamental Theories of Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-31299-6_1

Download citation

Publish with us

Policies and ethics