Advertisement

65 Years in and Around Relativity

  • Carl H. BransEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 183)

Abstract

At the very beginning I must thank all of the contributors to this book for taking their valuable time to add to it.

Keywords

Null Geodesic Riemann Tensor Lorentz Signature Bundle Theory Spacetime Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Steen, J. Seebach, Counterexamples in Topology (Holt, Rinehart and Winston, 1970)zbMATHGoogle Scholar
  2. 2.
    C. Brans, On Unified Field Theories. Undergraduate thesis, Loyola University (1957) (Unpublished)Google Scholar
  3. 3.
    P. Dirac, Proc. Roy. Soc. (London) Al65, 199 (1938)Google Scholar
  4. 4.
    J. Barbour, H. Pfister (ed.), Mach’s Principle v. 6 of Einstein Studies (Birkauser, 1995)Google Scholar
  5. 5.
    D. Sciama, Month. Not. Royal Astron. Soc. 113, 34 (1953)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Brans, Mach’s principle and the locally measured gravitational constant in general relativity. Phys. Rev. 125, 388 (1962)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Roll, R. Krotkov, R. Dicke, Ann. Phys. 26, 442 (1964)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Brans, Mach’s principle and a relativistic theory of gravitation, II. Phys. Rev. 125, 2194 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Jordan, Schwerkrft und Weltall (Vieweg, 1955)Google Scholar
  10. 10.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Poisson, C. Will, Gravity (Cambridge, 2014)Google Scholar
  12. 12.
    C. Brans, Mach’s Principle and a Varying Gravitational Constant. Ph.D. thesis, Princeton University (1961) (Unpublished)Google Scholar
  13. 13.
    R.H. Dicke, Phys. Rev. 125, 2163 (1962)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R.H. Dicke, The Theoretical Significance of Experimental Relativity (Gordon and Breach, 1964)Google Scholar
  15. 15.
    C. Brans, C.H. Brans, Varying Newton’s constant: a personal history of scalar-tensor theories, in Einstein Online, vol. 4, 1002 (2010)Google Scholar
  16. 16.
  17. 17.
    E. Schucking, Phys. Today 52, 26 (1999)CrossRefGoogle Scholar
  18. 18.
    C. Brans, Invariant approach to the geometry of spaces in general relativity. J. Math. Phys. 6, 94 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A.Z. Petrov, Einstein Spaces (Pergamon Press) English translation from Russian (1969)Google Scholar
  20. 20.
    A. Petrov, Sci. Not. Kazan 114, 55 (1954)Google Scholar
  21. 21.
    C. Brans, A computer program for the non-numerical testing and reduction of sets of algebraic partial differential equations. J. Assoc. Comp. Mach. 14, 45 (l967)Google Scholar
  22. 22.
    C. Brans, Invariant representation of all analytic Petrov type III solutions to the Einstein equations. J. Math. Phys. 11, 1210 (1970)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H-J. Schmidt, Consequences of the non-compactness of the Lorentz group. Int. J. Theo. Phys. 37, 691 (1998)Google Scholar
  24. 24.
    C. Brans, Complex two-form representation of the Einstein equations, the Petrov type III solutions. J. Math. Phys. 12, 1616 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    C. Brans, Complex bundle structure and the Einstein equations. Bull. A.P.S. 19, 508 (1974)Google Scholar
  26. 26.
    C. Brans, Complex structures and representations of the Einstein equations. J. Math. Phys. 15, 1559 (1974)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Thorpe, J. Math. Phys. 10, 1 (1969)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Brans, Singularities in bootstrap gravitational geons. Phys. Rev. 140B, 1174 (1965)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Komar, Phys. Rev. 137, B462 (1965)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Brans, Some restrictions on algebraically general vacuum metrics. J. Math. Phys. 16, 1008 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    C. Brans, Complete integrability conditions of the Einstein-Petrov equations, type I. J. Math. Phys. 18, 1378 (1977)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    R.H. Dicke, P. Peebles, P.G. Roll, D.T. Wilkinson, Ap. J. 142, 414 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    A.A. Penzias, R.W. Wilson, Ap. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    C. Brans, Propagations of electromagnetic polarization effects in anisotropic cosmologies. Ap. J. 197, 1 (1975)ADSCrossRefGoogle Scholar
  35. 35.
    A. Einstein, The Meaning of Relativity (Princeton, 1950)Google Scholar
  36. 36.
    C. Brans, Absence of inertial induction in general relativity. Phys. Rev. Lett. 39, 856 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    V. Varadarajan, Geometry of Quantum Theory (Van Nostrand, 1978)Google Scholar
  38. 38.
    A. Marlow (ed.), Mathematical Foundations of Quantum Theory (Academic Press, 1978)Google Scholar
  39. 39.
    C. Brans, D.R. Stewart, Unaccelerated-returning-twin paradox in flat space-time. Phys. Rev. D 8, 1662 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    J. Bell, Physics 1, 195 (1964)Google Scholar
  41. 41.
    C. Brans, Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219 (1988)CrossRefGoogle Scholar
  42. 42.
    D. Mermin, Rev. Mod. Phys. 65, 803 (1993)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    K. deRaedt et al., Eur. Phys. J. B 53, 139 (2006)Google Scholar
  44. 44.
    C. Brans, Consistency of field equations in ‘self-creation’ cosmologies. Gen. Relat. Grav. 19, 949 (1987)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    G. Barber, Gen. Rel. Grav. 14, 117 (1982)Google Scholar
  46. 46.
    M. Ferraris et al., Class. Quant. Grav. 5, L95 (1988)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    G. Magnan, Gen. Rel. Grav. 19, 465 (1987)ADSCrossRefGoogle Scholar
  48. 48.
    C. Brans, Non-linear Lagrangians and the significance of the metric. Class. Quantum Grav. 5, L197 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    C. Brans, Gravity and the tenacious scalar field, in On Einstein’s Path, Essays in honor of Engelbert Schücking, ed. by A. Harvey. (Springer, Berlin, 1998), pp. 121–138, arXiv:gr-qc/9705069 Google Scholar
  50. 50.
    C. Brans, The roots of scalar-tensor theory: an approximate history, in Proceedings of International Workshop on Gravitation and Cosmology, Santa Clara, Cuba (2004), arXiv:gr-qc/0506063
  51. 51.
    Y. Fujii, K-I. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge, 2003)Google Scholar
  52. 52.
    R. Dicke, Rev. Mod. Phys. 29, 363 (1957)Google Scholar
  53. 53.
    P. Bergmann, Ann. Math. 49, 255 (1948)MathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Bergmann, Int. J. Theo. Phys. 1, 25 (1968)CrossRefGoogle Scholar
  55. 55.
    T. Asselmeyer, C. Brans, Book: Exotic Structures and Physics: Differential Topology and Spacetime Models (World Scientific Press, 2007)Google Scholar
  56. 56.
    R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus (American Mathematical Society, 1999)Google Scholar
  57. 57.
    A. Scorpan, The Wild World of 4-Manifolds (American Mathematical Society, 2005)Google Scholar
  58. 58.
    M. Freedman, Not. Am. Mat. Soc. 31, 3 (1984)ADSGoogle Scholar
  59. 59.
    Daniel S. Freed, Karen K. Uhlenbeck, Instantons and Four-Manifolds (Springer, New York, 1984)CrossRefzbMATHGoogle Scholar
  60. 60.
    S. Donaldson, J. Diff. Geom. 18, 269 (1983)MathSciNetGoogle Scholar
  61. 61.
    C. Brans, Gen. Rel. Grav. 34, 1767 (2002)Google Scholar
  62. 62.
    C. Brans, Exotic Black Holes? arXiv:gr-qc/9303035
  63. 63.
    J. Milnor, Ann. Math. 64, 399 (1956)MathSciNetCrossRefGoogle Scholar
  64. 64.
    M. Jammer, Concepts of Space: The History of Theories of Space in Physics, 3rd edn. (Dover, 1993)Google Scholar
  65. 65.
    R.E. Gompf, J. Diff. Geom. 37, 199 (1993)Google Scholar
  66. 66.
    M. Freedman, L. Taylor, J. Diff. Geom. 24, 69 (1986)MathSciNetGoogle Scholar
  67. 67.
    N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994)Google Scholar
  68. 68.
    J. Sładkowski, Gravity on exotic \({\mathbb{R}}^{4}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    R.E. Gompf, J. Diff. Geom. 21, 283 (1985)MathSciNetGoogle Scholar
  70. 70.
    Norman Steenrod, The Topology of Fiber Bundles (Princeton University Press, Princeton, 1951)zbMATHGoogle Scholar
  71. 71.
    S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry (Springer, Berlin, 1990)CrossRefzbMATHGoogle Scholar
  72. 72.
    D. Gromoll, W. Mayer, Ann. Math. 100, 401 (1974)CrossRefGoogle Scholar
  73. 73.
    C. Brans, Localized exotic smoothness. Class. Quantum Grav. 11, 1785 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    D. Kotschick, Geom. Topol. 2, 1 (1998)MathSciNetCrossRefGoogle Scholar
  75. 75.
    C.H. Brans, D. Randall, Exotic differentiable structures and general relativity. Gen. Rel. Grav. 25, 205 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    C. Brans, Absolulte spacetime: the twentieth century ether. Gen. Rel. Grav. 31, 597 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    C.H. Brans, Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    C.H. Brans, Localized exotic smoothness. Class. Quant. Grav. 11, 1785–1792 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    J. Sładkowski, Exotic smoothness and particle physics. Acta Phys. Polon. B 27, 1649–1652 (1996)Google Scholar
  80. 80.
    J. Sładkowski. Exotic smoothness, fundamental interactions and noncommutative geometry (1996), arXiv:hep-th/9610093
  81. 81.
    J. Sładkowski, Exotic smoothness, noncommutative geometry and particle physics. Int. J. Theor. Phys. 35, 2075–2083 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    T. Asselmeyer, Generation of source terms in general relativity by differential structures. Class. Quant. Grav. 14, 749–758 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    J. Sładkowski, Strongly gravitating empty spaces (1999). Preprint arXiv:gr-qc/9906037
  84. 84.
    T. Asselmeyer-Maluga, C.H. Brans, Cosmological anomalies and exotic smoothness structures. Gen. Rel. Grav. 34, 1767–1771 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    T. Asselmeyer-Maluga, J. Król, Inflation and topological phase transition driven by exotic smoothness. Adv. HEP Volume 2014:867460 (article ID) (2014), http://dx.doi.org/10.1155/2014/867460, arXiv:1401.4815 Google Scholar
  86. 86.
    H. Pfeiffer, Quantum general relativity and the classification of smooth manifolds. Report number: DAMTP 2004–32, (2004)Google Scholar
  87. 87.
    T. Asselmeyer-Maluga, Exotic smoothness and quantum gravity. Class. Q. Grav. 27, 165002 (2010), arXiv:1003.5506 Google Scholar
  88. 88.
    J. Król, A model for spacetime II. The emergence of higher dimensions and field theory/strings dualities. Found. Phys. 36, 1778 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    J. Król, A model for spacetime: the role of interpretation in some Grothendieck topoi. Found. Phys. 36, 1070 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    J. Król, Background independence in quantum gravity and forcing constructions. Found. Phys. 34, 361–403 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    J. Król, Exotic smoothness and non-commutative spaces. The model-theoretic approach. Found. Phys. 34, 843–869 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    T. Asselmeyer-Maluga, J. Król, Abelian gerbes, generalized geometries and foliations of small exotic \(R^4\) (2015), arXiv: 0904.1276v5 (subm. to Lett. Math. Phys.)
  93. 93.
    T. Asselmeyer-Maluga, J. Król, Exotic smooth \(\mathbb{R}^4\) (2010), noncommutative algebras and quantization. arXiv:1001.0882
  94. 94.
    T. Asselmeyer-Maluga, J. Król. Constructing a quantum field theory from spacetime ()2011, arXiv:1107.3458
  95. 95.
    T. Asselmeyer-Maluga, R. Mader, Exotic \(R^4\) and quantum field theory, in 7th International Conference on Quantum Theory and Symmetries (QTS7), ed. by C. Burdik et al. (IOP Publishing. Bristol, 2012), p. 012011, doi: 10.1088/1742-6596/343/1/012011, arXiv:1112.4885 Google Scholar
  96. 96.
    V. Chernov, S. Nemirovski, Cosmic censorship of smooth structures. Comm. Math. Phys. 320, 469–473 (2013), arXiv:1201.6070 Google Scholar
  97. 97.
    T. Asselmeyer-Maluga, J. Król, Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26, 3421–3437 (2011), arXiv:1105.1557 Google Scholar
  98. 98.
    T. Asselmeyer-Maluga, J. Król, Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods Mod. Phys. 10(10), (2013) (will be published in November 2013), arXiv:1211.3012
  99. 99.
    T. Asselmeyer-Maluga, H. Rosé, On the geometrization of matter by exotic smoothness. Gen. Rel. Grav. 44, 2825–2856 (2012), doi: 10.1007/s10714-012-1419-3, arXiv:1006.2230 Google Scholar
  100. 100.
    R. Fintushel, R. Stern, Knots, links, and 4-manifolds. Inv. Math. 134, 363–400 (1998), arXiv:dg-ga/9612014 Google Scholar
  101. 101.
    T. Asselmeyer-Maluga, C.H. Brans, How to include fermions into general relativity by exotic smoothness. Gen. Relat. Grav. 47, 30 (2015), doi: 10.1007/s10714-015-1872-x, arXiv:1502.02087
  102. 102.
    T. Asselmeyer-Maluga, C.H. Brans, Smoothly Exotic Black Holes. Space Science, Exploration and Policies (NOVA Publishers, 2012), pp. 139–156Google Scholar
  103. 103.
    T. Asselmeyer-Maluga, J. Król, On topological restrictions of the spacetime in cosmology. Mod. Phys. Lett. A 27, 1250135 (2012), arXiv:1206.4796
  104. 104.
    T. Asselmeyer-Maluga, J. Król, Decoherence in quantum cosmology and the cosmological constant. Mod. Phys. Lett. A 28, 1350158 (2013), doi: 10.1142/S0217732313501587, arXiv:1309.7206 Google Scholar
  105. 105.
    T. Asselmeyer-Maluga, J. Król, Small exotic smooth \(R^4\) and string theory, in International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, ed. by R. Bathia (Hindustan Book Agency, 2010), p. 400Google Scholar
  106. 106.
    T. Asselmeyer-Maluga, J. Król, Exotic smooth \(R^4\) and certain configurations of NS and D branes in string theory. Int. J. Mod. Phys. A 26, 1375–1388 (2011), arXiv: 1101.3169 Google Scholar
  107. 107.
    T. Asselmeyer-Maluga, J. Krol, Quantum D-branes and exotic smooth \(\mathbb{R}^4\). Int. J. Geom. Methods Mod. Phys. 9, 1250022 (2012), arXiv:1102.3274
  108. 108.
    T. Asselmeyer-Maluga, J. Król, Higgs potential and confinement in Yang-Mills theory on exotic \(\mathbb{R}^4\) (2013), arXiv:1303.1632

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Loyola UniversityNew OrleansUSA

Personalised recommendations