Skip to main content

Methods of Visual Navigation of the UAV Flying Over the Nonplanar District

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 447))

Abstract

This article is devoted to development of methods of positioning of unmanned aerial vehicles (UAV) with use of video cameras and methods of computer vision. UAV flies over the district, having a relief. Main feature of proposed method is using of Gabor’s wavelets to search of so-called reference points with known 3D-coordinates. Reference points are used from etalon images of the district (for example, satellite images) and looked for on the frame from the UAV’s camera. Also, comparison of feature points from the frame and a satellite image detected by SURF algorithm is used. The system of modeling of flight of the virtual UAV which allows testing the developed algorithms is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. In: IEEE Transactions on Robotics, vol. 28(1), pp. 90–100. IEEE Press (2012)

    Google Scholar 

  2. Collier, J., Trentini, M., Giesbrecht, J., McManus, C., Furgale, P., Stenning, B., Barfoot, T.D., Kotamraju, S., Se, V., Jasiobedzki, P., Shang, L., Chan, B., Harmat, A., Sharf, I.: Autonomous navigation and mapping in GPS-denied environments at defence R&D Canada. In: Proceedings of NATO Symposium SET 168: Navigation Sensor and Systems in GNSS Denied Environments, p. 12. Izmir, Turkey (2012)

    Google Scholar 

  3. Piratla, V., Malode, S.B., Saini, S.K., Jakhotia, A., Sao, A.K., Rajpurohit, B.S., Haobijam, G.: Autonomous navigation in GPS denied indoor environment using RGBD sensor, kinect. In: Fourth Symposium on Indoor Flight Issues, p. 12 (2012)

    Google Scholar 

  4. Bachrach, A., Prentice, S., He, R., Roy, N.: RANGE—robust autonomous navigation in GPS-denied environments. J. Field Robot. 29 (2011)

    Google Scholar 

  5. Grzonka, S., Grisetti, G., Burgard, W.: Autonomous indoors navigation using a small-size quadrotor. In: Workshop Proceedings of International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR), pp. 455–463. Venice, Italy (2008)

    Google Scholar 

  6. Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP J. Adv. Sig. Process. 18 (2009)

    Google Scholar 

  7. Nwe, T.T., Htike, T., Mon, K.M., Naing, Z.M., Myint, Y.M.: Application of an inertial navigation system to the quad-rotor UAV using MEMS sensors. Proc. World Acad. Sci.: Eng. Technol. 44, 578–582 (2008)

    Google Scholar 

  8. Andert, F., Adolf, F.: Online world modeling and path planning for an unmanned helicopter. Auton. Robots 27(3), 147–164 (2009)

    Article  Google Scholar 

  9. Kemp, C.: Visual control of a miniature quad-rotor helicopter. PhD thesis, p. 147. University of Cambridge (2006)

    Google Scholar 

  10. Johnson, N.: Vision-assisted control of a hovering air vehicle in an indoor setting. Master’s thesis, p. 155. Brigham Young University (2008)

    Google Scholar 

  11. Ahuja, S.: Correlation based similarity measures—summary https://siddhantahuja.wordpress.com/tag/sum-of-absolute-differences-sad/

  12. Michaelsen, E., Kirchhof, M., Stilla, U.: Sensor pose inference from airborne videos by decomposing homography estimates. In: Altan M.O. (ed.) International Archives of Photogrammetry and Remote Sensing, vol. 35, Part B3, p. 6 (2004)

    Google Scholar 

  13. Vargas, M., Malis, E.: Visual servoing based on an analytical homography decomposition. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, pp. 5379–5384. Seville, Spain (2005)

    Google Scholar 

  14. Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Media, p. 576 (2008)

    Google Scholar 

  15. Kamarainen, J.-K.: Invariance properties of gabor filter based features— overview and applications. IEEE Trans. Image Process. 15(5), 12 (2006)

    Google Scholar 

  16. Bardsley, D.: Stereo vision for 3d face recognition, year 1 annual review, PhD report. University of Nottingham, p. 36 (2005)

    Google Scholar 

  17. GDAL, translator library for raster geospatial data formats. http://gdal.org

  18. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  19. osgEarth—C++ geospatial SDK and terrain engine. http://osgearth.org/

  20. Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. Photogrammetry Remote Sens. 60(4), 284–294 (2006)

    Article  Google Scholar 

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  22. Cesetti, A., Frontoni, E., Mancini, A., Ascani, A., Zingaretti, P., Longhi, S.: A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications. J. Intell. Rob. Syst. 61(1), 157–168 (2011)

    Article  Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation, agreement № 14.607.21.0012 for a grant on “Conducting applied research for the development of intelligent technology and software systems, navigation and control of mobile technical equipment using machine vision techniques and high-performance distributed computing”. Unique identifier: RFMEFI60714X0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Tishchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Stepanov, D., Tishchenko, I. (2017). Methods of Visual Navigation of the UAV Flying Over the Nonplanar District. In: Kim, JH., Karray, F., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing, vol 447. Springer, Cham. https://doi.org/10.1007/978-3-319-31293-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31293-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31291-0

  • Online ISBN: 978-3-319-31293-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics