The word laser is an acronym for light amplification by stimulated emission of radiation, although common usage today is to use the word as a noun—laser—rather than as an acronym—LASER.


Atomic Lattice Sites Electron Kinetic Theory Directed Energy Weapons Detonation Wave High Power Laser Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schriempf JT (1974) Response of materials to laser radiation a short course. NRL Report 7728, July 10, 1974. Department of Navy, Office of Naval Research Arlington, VA 22217Google Scholar
  2. 2.
    Ready JF (1971) Effects of high-power laser radiation. Academic Press, New YorkGoogle Scholar
  3. 3.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, OxfordzbMATHGoogle Scholar
  4. 4.
    Nowakowski KA (2005) Laser beam interaction with materials for microscale applications. PhD Dissertation, Worcester Polytechnic Institute, 22 November 2005Google Scholar
  5. 5.
    Ross D (1969) Lasers: light amplifiers and oscillators. Academic Press, New York, p 72Google Scholar
  6. 6.
    Wester R (2011) In: Poprawe R (ed) Tailored Light 2: laser application technology. New York, Springer PublicationGoogle Scholar
  7. 7.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Zettili N (2009) Quantum mechanics, concept and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  9. 9.
    John F (1971) Ready, effects of high-power laser radiation. Academic Press, New YorkGoogle Scholar
  10. 10.
    Wieting TJ, Schriempf JT (1972) Free electron theory and laser interaction with metals. Report of NRL Progress, June 1972, pp 1–13Google Scholar
  11. 11.
    Bonch-Bruevich AM, Imas YaA (1967) Zh Tekh Fiz 37:1917 (English transl.: Sov PhysTech Phys 12:1407 (1968))Google Scholar
  12. 12.
    Zhang SY, Ren YH, Lupke G (2003) Appl Opt 42(4):715CrossRefGoogle Scholar
  13. 13.
    Romero LA, Dickey FM (1996) J Opt Soc Am A 13(4):751CrossRefGoogle Scholar
  14. 14.
    Momma C, Nolte S, Kamlage G, von Alvensleben F, Tunnermann A (1998) Appl Phys A Mater Sci Process 67(5):517CrossRefGoogle Scholar
  15. 15.
    Sanner N, Huot N, Audouard E, Larat C, Huignard JP, Loiseaux B (2005) Opt Lett 30(12):1479CrossRefGoogle Scholar
  16. 16.
    Nemoto K, Nayuki T, Fujii T, Goto N, Kanai Y (1997) Appl Opt 36(30):7689CrossRefGoogle Scholar
  17. 17.
    McLeod E, Hopkins AB, Arnold CB (2006) Opt Lett 31(21):3155CrossRefGoogle Scholar
  18. 18.
    Heinemann S (1995) Opt Commun 119(5–6):613CrossRefGoogle Scholar
  19. 19.
    Dickey FM, Holswade SC (eds) (2000) Laser beam shaping: theory and techniques. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Bäuerle D (2000) Laser processing and chemistry. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Heller J, Bartha JW, Poon CC, Tam AC (1999) Appl Phys Lett 75(1):43CrossRefGoogle Scholar
  22. 22.
    Toulemonde M, Unamuno S, Heddache R, Lampert MO, Hageali M, Siffert P (1985) Appl Phys A Mater Sci Process 36(1):31CrossRefGoogle Scholar
  23. 23.
    Toulemonde M, Unamuno S, Heddache R, Lampert MO, Hageali M, Siffert P (1985) Appl Phys A Mater Sci Process 36(1):31CrossRefGoogle Scholar
  24. 24.
    Arnold CB, Aziz MJ, Schwarz M, Herlach DM (1999) Phys Rev B 59(1):334CrossRefGoogle Scholar
  25. 25.
    Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Phys Rev B 64(4):045411CrossRefGoogle Scholar
  26. 26.
    Baeuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, New York. ISBN 3-540-66891-8CrossRefGoogle Scholar
  27. 27.
    Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC, Boca RatonGoogle Scholar
  28. 28.
    Slusher RE, Eggleton BJ (2004) Nonlinear photonic crystals, 1st edn. Springer, BerlinGoogle Scholar
  29. 29.
    Ghofraniha N, Conti C, Ruocco G, Trillo S (2007) Phys Rev Lett 99(4):043903CrossRefGoogle Scholar
  30. 30.
    Staudt W, Borneis S, Pippert KD (1998) Phys Status Solidi A Appl Res 166(2):743CrossRefGoogle Scholar
  31. 31.
    Mori N, Ando T (1989) Phys Rev B 40(9):6175CrossRefGoogle Scholar
  32. 32.
    Columbia (2005) Laser micromachining, 10 November 2005. www.mrl.columbia.eduGoogle Scholar
  33. 33.
    Lasag (1997) Operator’s manual for KLS 126 laser source. LASAG Corporation, SwitzerlandGoogle Scholar
  34. 34.
    Semak V, Matsunawa A (1997) The role of recoil pressure in energy balance during laser materials processing. J Phys D Appl Phys 30:2541–2552CrossRefGoogle Scholar
  35. 35.
    Bronski MT (2003) Development of a process characterization of Nd:YAG crystals. MS Thesis, Center for Holographic Studies and Laser micro-mechaTronics, Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MAGoogle Scholar
  36. 36.
    Bonch-Bruevich AM, Imas YaA (1967) Zh Tekh Fiz 37:1917 (English transl.: Sov Phys Tech Phys 12:1407 (1968))Google Scholar
  37. 37.
    Nowak T (1990) Theoretical and experimental investigation of laser drilling in a partially transparent medium. MS Thesis, Center for Holographic Studies and Lasermicro-mechaTronics, Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MAGoogle Scholar
  38. 38.
    Yilbas BS (1995) Study of liquid and vapor ejection processes during laser drilling of metals. J Laser Appl 7:147–152CrossRefGoogle Scholar
  39. 39.
    Tokarev VN, Lunney JG, Marinea W, Sentis M (1995) Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume. J Appl Phys 78(2):1241–1246CrossRefGoogle Scholar
  40. 40.
    Yilbas BS, Yilbas Z, Akcakoyun N (1996) Investigation into absorption of the incident laser beam during Nd:YAG laser processing of metals. Opt Laser Technol 28(7):503–511CrossRefGoogle Scholar
  41. 41.
    Yilbas BS, Yilbas Z, Sami M (1996) Thermal processes taking place in the bone during CO2 laser irradiation. Opt Laser Technol 28(7):513–519CrossRefGoogle Scholar
  42. 42.
    Tabor D (1991) Gases, liquids and solids and other states of matter, 3rd edn. Cambridge University Press, Cambridge, p 272CrossRefGoogle Scholar
  43. 43.
    Bejan A (1993) Heat transfer. Wiley, New York, NYzbMATHGoogle Scholar
  44. 44.
    Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51:941–947CrossRefGoogle Scholar
  45. 45.
    Gordon R, Cobonpue J (1961) Heat transfer between a flat plate and jets of air impinging on it. Heat Transfer Pt. II:454–460, ASME, New York, NYGoogle Scholar
  46. 46.
    Niedrig R, Bostanjoglo O (1996) Imaging and modeling of pulse laser induced evaporation of metal films. J Appl Phys 81(1):480–485CrossRefGoogle Scholar
  47. 47.
    Semak V, Damkroger B, Kemka S (1999) Temporal evaluation of the temperature filed in the beam interaction zone during laser material processing. J Phys D Appl Phys 32:1819–1825CrossRefGoogle Scholar
  48. 48.
    Zohuri B (2015) Dimensional analysis and self-similarity methods for engineers and scientists. Springer Publishing Company, New YorkCrossRefzbMATHGoogle Scholar
  49. 49.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32:1679CrossRefGoogle Scholar
  50. 50.
    Heckman RC (1971) Thermal diffusivity finite pulse time corrections. Sandia Laboratories Research Report SC-RR-710280, May 1971Google Scholar
  51. 51.
    Schriempf JT (1972) Rev Sci Instrum 43:781CrossRefGoogle Scholar
  52. 52.
    Sparks M (1975) Theory of laser heating of solids: metals. J Appl Phys 47(3):837–849CrossRefGoogle Scholar
  53. 53.
    Yilbas BS, Sami M (1997) Liquid ejection and possible nucleate boiling mechanism in relation to the Laser drilling process. J Phys D Appl Phys 30:1996–2005CrossRefGoogle Scholar
  54. 54.
    Sparks M (1975) Theory of laser heating of solids: metals. J Appl Phys 47(3):837–849CrossRefGoogle Scholar
  55. 55.
    Anisimov SI, Khokhlov VA (1995) Instabilities in laser-matter interaction. CRC, Boca Raton, FLGoogle Scholar
  56. 56.
    Yilbas BS, Gbadebo SA, Sami M (2000) Laser heating: an electro-kinetic theory approach and induced thermal stresses. Opt Laser Eng 33:65–79CrossRefGoogle Scholar
  57. 57.
    Yilbas BS, Arif AFM (2001) Material response to thermal loading due to short pulse laser heating. Int J Heat Mass Transfer 44:3787–3798CrossRefzbMATHGoogle Scholar
  58. 58.
    Nash GE, Thermal response calculation. Naval Research Laboratory, Washington, DC, unpublished dataGoogle Scholar
  59. 59.
    Anisimov SI (1968) High Temp 6:110. Translated from Teplofizika Vysokikh Temperature 6:116 (1968). Original article submitted December 6, 1966Google Scholar
  60. 60.
    Nielsen PE, Canavan GH (1971) Laser absorption waves. Air Force Weapons Laboratory Laser Division Digest LRD-71-2, p 110, December 1971Google Scholar
  61. 61.
    Canavan GH, Nielsen PE, Harris RD (1972) Radiation of momentum transfer to solid targets by plasma ignition. Air Force Weapon Laboratory Laser Division Digest LRD-72-1, p 125, June 1972Google Scholar
  62. 62.
    Raizer YP (1965) Sov Phys JETP 21:1009Google Scholar
  63. 63.
    Zel’dovich YB, Raizer YP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York, p 346Google Scholar
  64. 64.
    Metz SM, Hettche LR, Stegman RL (1973) Intensity dependence of target response to high-intensity pulsed 10.6 μ laser radiation. In DOD Laser effects/hardening conference, Monterey, CA, 23–26 October 1973Google Scholar
  65. 65.
    Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  66. 66.
    Dausinger F, Lichtner F, Lubatschowski H (2004) Femtosecond technology for technical and medical applications. Springer, BerlinCrossRefGoogle Scholar
  67. 67.
    Balling P (2006) In: Kane DM (ed) Laser cleaning II. World Scientific Publishing Company, Singapore, p 257Google Scholar
  68. 68.
    The American Physical Society (1987) Report to the American Physical Society of the Study Group on Science and Technology of Directed Energy Weapons. The American Physical SocietyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Galaxy Advanced Engineering, Inc.AlbuquerqueUSA

Personalised recommendations