Laser-Directed Energy Concepts



This chapter will discuss directed energy concepts for strategic defense. We will talk about defensive weapons as a countermeasure against any measure that is applied in terms of a lethal weapon against friendly targets. Directed energy concepts can play unique roles in strategic defense because of their reaction time, speed of light engagement, and large geographic converge. This chapter discusses the main directed energy concepts, engagements in which they could have significant advantage, and their expected performance in them. It covers both boost-phase engagements and midcourse applications and contrasts these results with those of earlier analyses (Fig. 5.1).


Target Surface Laser Heating Isothermal Surface Laser Irradiance Airborne Laser Swath Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McComb G (1997) Lasers, ray guns, & light cannons, project from the Wizard’s workbench. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Wieting TJ, Schriempf JT (1976) J Appl Phys 47:4009CrossRefGoogle Scholar
  3. 3.
    Sturmer E, Von Allmen M (1978) J Appl Phys 49:5648CrossRefGoogle Scholar
  4. 4.
    Luikov AV (1968) Analytical heat diffusion theory. Academic, New YorkGoogle Scholar
  5. 5.
    Wooten F (1972) Optical properties of solids. Academic, New YorkGoogle Scholar
  6. 6.
    Carslaw HS, Jaeger JC (1959) Chapter 1 Page 11 and 89 in Conduction of heat in solids, 2nd edn. Clarendon, OxfordGoogle Scholar
  7. 7.
    Duley WW (1976) CO2 lasers: effects and applications. Academic, New York, NYCrossRefGoogle Scholar
  8. 8.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, LondonGoogle Scholar
  9. 9.
    Barbrino S, Grasso F, Guerriera G, Musumeci F, Scordino A, Triglia A (1982) Appl Phys A29:77CrossRefGoogle Scholar
  10. 10.
    Roos A, Bergkvist M, Ribbing CG (1989) Appl Opt 28:1360CrossRefGoogle Scholar
  11. 11.
    Honig RE (1963) Appl Phys Lett 3:8CrossRefGoogle Scholar
  12. 12.
    Lichtman D, Ready JF (1963) Phys Rev Lett 10:342CrossRefGoogle Scholar
  13. 13.
    Giovi F, Mackenzie LA, McKinney EJ (1963) Appl Phys Lett 3:25CrossRefGoogle Scholar
  14. 14.
    Basov NG, Yu Gus’kov S, Danilova GV, Demchenko NN, Zmitrenko NV, Ya Karpov V, Mishchenko TV, Rozanov VB, Samarski AA (1985) Sov J Quantum Electron 15(6):852CrossRefGoogle Scholar
  15. 15.
    Nuckolls JH (1980) In Laser Program Annual Report 1979, UCRL-50021-79, Vol 2, p. 2Google Scholar
  16. 16.
    Afanasiev YuV, Gamaly EG, Gus’kov SYu, Demchenko NN, Rozanov VB (1988) Laser and particle beam, 6, Paert 1:1Google Scholar
  17. 17.
    Ready JF (1997) Industrial applications of lasers, 2nd edn. Academic, New YorkGoogle Scholar
  18. 18.
    Cohen MI (1967) J Franklin Institute 283:271CrossRefGoogle Scholar
  19. 19.
    Ready JF (1971) Effects of high-power laser radiation. Academic, New York, NYGoogle Scholar
  20. 20.
    Kittle C (1996) Introduction to solid state physics, 7th edn. John Wiley, New York, NYGoogle Scholar
  21. 21.
    Ready JF (1965) J Appl Phys 36:462CrossRefGoogle Scholar
  22. 22.
    Vertes A, Juhasz P, Gijbels R, Fresenius Z (1989) Anal Chem 334:682Google Scholar
  23. 23.
    Duley WW, Semple DJ, Morency JP, Gravel M (1979) Opt Laser Technol 11:281CrossRefGoogle Scholar
  24. 24.
    Wieting TJ, De Rosa JL (1979) J Appl Phys 50:1071CrossRefGoogle Scholar
  25. 25.
    Shewell J (1977) Weld Des Fab, June, p 100Google Scholar
  26. 26.
    Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, pp 500–511zbMATHGoogle Scholar
  27. 27.
    Dowden JM (2001) The mathematics of thermal modeling: an introduction to the theory of laser material processing, 1st edn. Chapman and Hall, LondonCrossRefzbMATHGoogle Scholar
  28. 28.
    Duley WW (1996) UV lasers: effects and applications in materials science, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. 29.
    Kinsman G, Duley WW (1993) Appl Opt 32:7462CrossRefGoogle Scholar
  30. 30.
    Schriempf JT (1974) Response of materials to laser radiation: a short course, NRL report 7728, July 10, 1974. Naval Research Laboratory, Washington, DC, 20375Google Scholar
  31. 31.
    Accetta JS, Loomis DN (2007) High energy laser (HEL) lethality data collection standards-revision A. Directed Energy Professional Society, Albuquerque, New Mexico.
  32. 32.
    Balaze L, Gijbels R, Vertes A (1991) Anal Chem 63:314CrossRefGoogle Scholar
  33. 33.
    Kawmura Y, Toyoda K, Kawai M (1984) Appl Phys Lett 45:308Google Scholar
  34. 34.
    Duley WW (1983) Laser processing and analysis of materials. Plenum Press, New YorkCrossRefGoogle Scholar
  35. 35.
    Vertes A, Juhasz P, De Wolf M, Gijbels R (1989) Int J Mass Spectrum Ion Processes 94:63CrossRefGoogle Scholar
  36. 36.
    Vertes A, Juhasz P, De Wolf M, Gijbels R (1988) Scanning Microsc 2:1853Google Scholar
  37. 37.
    Vertes A, Juhasz P, De Wolf M, Gijbels R (1989) Adv A&s Spectrom 77:1638Google Scholar
  38. 38.
    Oziski MO (1968) Boundary value problems of heat conduction. Dover, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Galaxy Advanced Engineering, Inc.AlbuquerqueUSA

Personalised recommendations