Skip to main content

Evolution Solutions of Equilibrium Problems: A Computational Approach

  • Chapter
  • First Online:
Mathematical Analysis, Approximation Theory and Their Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

Abstract

This paper proposes a computational method to describe evolution solutions of known classes of time-dependent equilibrium problems (such as time-dependent traffic network, market equilibrium or oligopoly problems, and dynamic noncooperative games). Equilibrium solutions for these classes have been studied extensively from both a theoretical (regularity, stability behaviour) and a computational point of view. In this paper we highlight a method to further study the solution set of such problems from a dynamical systems perspective, namely we study their behaviour when they are not in an (market, traffic, financial, etc.) equilibrium state. To this end, we define what is meant by an evolution solution for a time-dependent equilibrium problem and we introduce a computational method for tracking and visualizing evolution solutions using a projected dynamical system defined on a carefully chosen L 2-space. We strengthen our results with various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Baiocchi, C., Capelo, A.: Variational And Quasivariational Inequalities. Applicartions to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Barbagallo, A., Cojocaru, M.: Continuity of solutions for parametric variational inequalities in Banach space. J. Math. Anal. Appl. 351(2), 707–720 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbagallo, A., Cojocaru, M.-G.: Dynamic equilibrium formulation of the oligopolistic market problem. Math. Comput. Model. 49, 966–976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven, CN (1956)

    Google Scholar 

  6. Brezis, H.: Inequations d’Evolution Abstraites. Comptes Rendus de l’Academie des Sciences, Paris (1967)

    MATH  Google Scholar 

  7. Cojocaru, M.-G.: Monotonicity and existence of periodic cycles for projected dynamical systems on Hilbert spaces. Proc. Am. Math. Soc. 134, 793–804 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cojocaru, M.-G.: Piecewise solutions of evolutionary variational inequalities. Consequences for the double-layer dynamics modelling of equilibrium problems. J. Inequal. Pure Appl. Math. 8(2) (2007). Article 63

    Google Scholar 

  9. Cojocaru, M.-G.: Double-layer dynamics theory and human migration after catastrophic events. Nonlinear Analysis with applications in Economics, Energy and Transportation, Bergamo University Press, pp. 65–86 (2007)

    Google Scholar 

  10. Cojocaru, M.-G.: Dynamic equilibria of group vaccination strategies in a heterogeneous population. J. Glob. Optim. 40, 51–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cojocaru, M.-G., Greenhalgh, S.: Dynamic games and hybrid dynamical systems. Optim. Eng. Appl. Var. Inequal. Issue 13(3), 505–517 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Cojocaru, M.-G., Jonker, L.B.: Existence of solutions to projected differential equations in Hilbert spaces. Proc. Am. Math. Soc. 132(1), 183–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cojocaru, M.-G., Pia, S.: Non-pivot and implicit projected dynamical systems on Hilbert spaces, J. Func. Spaces Appl. 2012, (2012), 23 pp. (2011). Article ID 508570

    Google Scholar 

  14. Cojocaru, M.-G., Daniele, P., Nagurney, A.: Double-layered dynamics: a unified theory of projected dynamical systems and evolutionary variational inequalities. Eur. J. Oper. Res. 175(6), 494–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dafermos, S.: Traffic equilibrium and variational inequalities. Trans. Sci. 14, 42–54 (1980)

    Article  MathSciNet  Google Scholar 

  16. Daniele, P.: Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar Publishing, Cheltenham (2006)

    MATH  Google Scholar 

  17. Dupuis, P., Nagurney, A.: Dynamical systems and variational inequalities. Ann. Oper. Res. 44, 9–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. Gwinner, J.: Time dependent variational inequalities - some recent trends. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, pp. 225–264. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  20. Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30(1), 105–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harker, P.T.: Generalized Nash games and quasivariational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  22. Harker, P., Pang, J.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Isac, G.: Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Johnston, M.D., Cojocaru, M.-G.: Equilibria and periodic solutions of projected dynamical systems on sets with corners. Aust. J. Math. Anal. Appl. 5(2) (2008)

    Google Scholar 

  25. Kinderlehrer, D., Stampacchia, D.: An Introduction to Variational Inequalities and Their Application. Academic, New York (1980)

    MATH  Google Scholar 

  26. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 22, 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica-Gabriela Cojocaru .

Editor information

Editors and Affiliations

Appendix to Example 3

Appendix to Example 3

Recalling the mapping

$$\displaystyle{ F(x) = \left (\begin{array}{l} 3x_{1} - x_{2} + x_{3}\\ \\ \frac{3} {2}x_{1} - 4x_{2} + x_{3}\\ \\ 2x_{1} - 7x_{2} + x_{3} \end{array} \right ), }$$

with the constraint set

$$\displaystyle{ \mathbb{K}(t)\,=\,\{x\in L^{2}([0,90], \mathbb{R}^{3})\mid 0\leq x(t),x_{ 1}(t)+x_{2}(t)+x_{3}(t)=\rho (t),x_{1}(t)+\frac{1} {2}x_{2}(t)\,=\,\psi (t)\}, }$$

We show below that F is monotone, but not strictly so. In what follows we make use of the following identities which can be derived from \(\mathbb{K}\): for all \(x,y \in \mathbb{K}\) we have that

$$\displaystyle{ x_{3} - y_{3} = -(x_{1} - y_{1}) - (x_{2} - y_{2}), }$$
(7)

and

$$\displaystyle{ x_{2} - y_{2} = -2(x_{1} - y_{1}). }$$
(8)

We evaluate now \(\langle F(y) - F(x),y - x\rangle =\sum _{ i=1}^{3}F_{ i}(x)(x_{i} - y_{i})\) with (7), (8) yielding

$$\displaystyle{ 2(x_{1} - y_{1})^{2} \geq 0,\,\forall x\neq y \in \mathbb{K}(t). }$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cojocaru, MG., Greenhalgh, S. (2016). Evolution Solutions of Equilibrium Problems: A Computational Approach. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_6

Download citation

Publish with us

Policies and ethics