Skip to main content

Positive Green’s Functions for Boundary Value Problems with Conformable Derivatives

  • Chapter
  • First Online:
Mathematical Analysis, Approximation Theory and Their Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

  • 1510 Accesses

Abstract

We use a newly introduced conformable derivative to formulate several boundary value problems with three or four conformable derivatives, including those with conjugate, right-focal, and Lidstone conditions. With the conformable differential equation and boundary conditions established, we find the corresponding Green’s functions and prove their positivity under appropriate assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Hammad, M., Khalil, R.: Abel’s formula and Wronskian for conformable fractional differential equations. Int. J. Differ. Equ. Appl. 13(3), 177–183 (2014)

    MATH  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.R., Avery, R.I.: Fractional-order boundary value problem with Sturm-Liouville boundary conditions. Electron. J. Differ. Equ. 2015(29), 1–10 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502 (2015). doi:10.1063/1.4922018

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311(2), 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389(1), 403–411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chai, G., Hu, S.: Existence of positive solutions for a fractional high-order three-point boundary value problem. Adv. Differ. Equ. 2014, 90 (2014)

    Google Scholar 

  8. Chen, Y., Li, Y.: The existence of positive solutions for boundary value problem of nonlinear fractional differential equations. Abst. Appl. Anal. 2014, 7 (2014). Article ID 681513

    Google Scholar 

  9. Chen, S., Liu, Y.: Solvability of boundary value problems for fractional order elastic beam equations. Adv. Differ. Equ. 2014, 204 (2014)

    Google Scholar 

  10. Eloe, P.W., Neugebauer, J.T.: Existence and comparison of smallest eigenvalues for a fractional boundary-value problem. Electron. J. Differ. Equ. 2014(43), 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Han, X., Gao, H.: Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations. Adv. Differ. Equ. 2012, 66 (2012)

    Google Scholar 

  12. Katugampola, U.: A new fractional derivative with classical properties. arXiv:1410.6535v2

    Google Scholar 

  13. Kelley, W., Peterson, A.: The Theory of Differential Equations Classical and Qualitative. Pearson Prentice Hall, Upper Saddle River, NJ (2004)

    Google Scholar 

  14. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X., Liu, Y.: Fractional differential equations with fractional non-separated boundary conditions. Electron. J. Differ. Equ. 2013(25), 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahmudov, N.I., Unul, S.: Existence of solutions of α ∈ (2, 3] order fractional three-point boundary value problems with integral conditions. Abst. Appl. Anal. 2014, 12 (2014). Article ID 198632

    Google Scholar 

  17. Sun, Y., Zhang, X.: Existence and nonexistence of positive solutions for fractional-order two-point boundary value problems. Adv. Differ. Equ. 2014, 53 (2014)

    Google Scholar 

  18. Wu, J., Zhang, X.: Eigenvalue problem of nonlinear semipositone higher order fractional differential equations. Abst. Appl. Anal. 2012, 14 (2012). Art. ID 740760

    Google Scholar 

  19. Zhang, X., Liu, L., Wiwatanapataphee, B., Wu, Y.: Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives. Abst. Appl. Anal. 2012, 16 (2012). Art. ID 512127

    Google Scholar 

  20. Zhou, X., Wu, W.: Uniqueness and asymptotic behavior of positive solutions for a fractional-order integral boundary-value problem. Electron. J. Differ. Equ. 2013(37), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderson, D.R. (2016). Positive Green’s Functions for Boundary Value Problems with Conformable Derivatives. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_3

Download citation

Publish with us

Policies and ethics