Skip to main content

Resolvent Operators for Some Classes of Integro-Differential Equations

  • Chapter
  • First Online:
Mathematical Analysis, Approximation Theory and Their Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

Abstract

Explicit representations are constructed for the resolvents of the operators of the form \(B =\widehat{ A} + Q_{1}\) and \(\mathbf{B} =\widehat{ A}^{2} + Q_{2}\), where \(\widehat{A}\) and \(\widehat{A}^{2}\) are linear closed operators with known resolvents and Q 1 and Q 2 are perturbation operators embedding inner products of \(\widehat{A}\) and \(\widehat{A}^{2}\) as they appear in integro-differential equations and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birman, M.S.: On the theory of self-adjoint extensions of positive definite operators. Mat. Sb. 38, 431–450 (1956) (Russian)

    MathSciNet  Google Scholar 

  2. Catchpole, E.A.: An integro-differential operator. J. London Math. Soc. 6, 513–523 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Desch, W., Grimmer, R.C., Schappacher, W.: Some considerations for linear integrodifferential equations. J. Math. Anal. Appl. 104, 219–234 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gorbachuk, V.I., Gorbachuk, M.L.: Boundary Value Problems for Operator Differential Equations. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  6. Grimmer, R.C.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grimmer, R.C., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 50, 234–259 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, M.: A class of integrodifferential equations and applications. Discret. Contin. Dyn. S. (2005). doi: 10.3934/proc.2005.2005.386

    MATH  Google Scholar 

  9. Hebbeche, A.: Generalized resolvents and spectrum for a certain class of perturbed symmetric operators. J. Appl. Math. Math. 1, 81–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  11. Kočubeĭ, A.N.: Extensions of symmetric operators and symmetric binary relations. Math. Notes. 17, 25–28 (1975)

    Article  MathSciNet  Google Scholar 

  12. Kreǐn, M.G.: Theory of self-adjoint extensions of symmetric semi-bounded operators and applications. I. Mat. Sb. 20, 431–495 (1947) (Russian)

    MATH  Google Scholar 

  13. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  14. Kurasov, P., Kuroda, S.T.: Krein’s resolvent formula and perturbation theory. J. Operator Theory 51, 321–334 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Liu, J.H.: Semilinear integrodifferential equations with nonlocal Cauchy problem. Nonlinear Analysis THA 26, 1023–1033 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, J.H.: Resolvent operators and weak solutions of integrodifferential equations. Differ. Integral Equ. 7, 523–534 (1994)

    MathSciNet  MATH  Google Scholar 

  17. McCartin, B.J.: Rayleigh-Schrödinger Perturbation Theory: Pseudoinverse Formulation. Hikari Ltd, Bulgaria (2009)

    MATH  Google Scholar 

  18. Mikhailov, S.E.: Finite-dimensional perturbations of linear operators and some applications to boundary integral equations. Eng. Anal. Boundary Elem. 23, 805–813 (1999)

    Article  MATH  Google Scholar 

  19. von Neumann J.: Allgemeine eigenwerttheorie Hermitescher funktionaloperatoren. Math. Ann. 102, 49–131 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  20. Otelbaev, M.O., Mynbaev, K.T.: Weighting Functional Spaces and Differential Operator Spectrum. Nauka, Moscow (1988)

    MATH  Google Scholar 

  21. Parasidis, I.N., Tsekrekos, P.C.: Correct self-adjoint and positive extensions of nondensely defined minimal symmetric operators. Abstr. Appl. Anal. 7, 767–790 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parasidis, I.N., Tsekrekos, P.C.: Some quadratic correct extensions of minimal operators in Banach spaces. Oper. Matrices 4, 225–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vishik, M.I.: On general boundary value problems for elliptic differential equations. Tr. Moskv. Mat. Obšv. 1, 187–246 (1952), translated in AMS Transl. 24, 107–172 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Providas .

Editor information

Editors and Affiliations

Appendix

Appendix

Problem 1.

Let the operator \(\widehat{A}: L_{2}(0,1) \rightarrow L_{2}(0,1)\) be defined by

$$\displaystyle{ \widehat{A}u = iu' = f,\quad D(\widehat{A}) =\{ u(t) \in H^{1}(0,1): u(0) + u(1) = 0\} }$$
(96)

Then \(\hat{A}\) is closed and:

  1. (i)

    \(\lambda \in \rho (\widehat{A})\) if and only if \(\lambda \neq (2k + 1)\pi,\quad k \in \mathbf{Z}\), i.e.

    $$\displaystyle{ \rho (\widehat{A}) =\{\lambda \in \mathbf{C}:\lambda \neq (2k + 1)\pi,\quad k \in \mathbf{Z}\}. }$$
    (97)
  2. (ii)

    For \(\lambda \in \rho (\widehat{A})\) the resolvent operator \(R_{\lambda }(\widehat{A})\) is bounded and defined on the whole space L 2(0, 1) by the formula

    $$\displaystyle{ R_{\lambda }(\widehat{A})f(t) = i\int _{0}^{1}e^{i\lambda (x-t)}\left [(e^{i\lambda } + 1)^{-1} -\eta (t - x)\right ]f(x)dx, }$$
    (98)

    where

    $$\displaystyle{\eta (t-x) = \left \{\begin{array}{lll} 1,&x \leq t& \\ & &\mbox{ is the Heaviside's function}.\\ 0, &x> t & \end{array} \right.}$$

Problem 2.

Let the operator \(\widehat{A}: L_{2}(0,1) \rightarrow L_{2}(0,1)\) be defined by

$$\displaystyle{ \widehat{A}u = u' = f,\quad D(\widehat{A}) =\{ u(t) \in H^{1}(0,1):\, u(0) = u(1)\}. }$$
(99)

Then the quadratic operator \(\widehat{A}^{2}: L_{2}(0,1) \rightarrow L_{2}(0,1)\) is closed and defined by

$$\displaystyle\begin{array}{rcl} \widehat{A}^{2}u = u'' = f,\quad D(\widehat{A}^{2}) =\{ u(t) \in H^{2}(0,1): u(0) = u(1),\,u'(0) = u'(1)\},& &{}\end{array}$$
(100)

the resolvent sets of \(\widehat{A}\) and \(\widehat{A}^{2}\) are

$$\displaystyle\begin{array}{rcl} \rho (\widehat{A}) =\{\lambda \in \mathbf{C}:\lambda \neq 2k\pi i,\,\,k \in \mathbf{Z}\},& &{}\end{array}$$
(101)
$$\displaystyle\begin{array}{rcl} \rho (\widehat{A}^{2}) =\{\lambda \in \mathbf{C}:\lambda \neq - 4k^{2}\pi ^{2},\,k \in \mathbf{Z}\}& &{}\end{array}$$
(102)

and the resolvent operators \(R_{\pm \lambda }(\widehat{A}),\,R_{\lambda }(\widehat{A}^{2})\) are bounded and defined on the whole space L 2(0, 1) by

$$\displaystyle\begin{array}{rcl} & & R_{\lambda }(\widehat{A})\,f(t)\, = \frac{1} {1 - e^{\lambda }}\int _{0}^{1}e^{\lambda (t-x+1)}f(x)dx +\int _{ 0}^{t}e^{\lambda (t-x)}f(x)dx{}\end{array}$$
(103)
$$\displaystyle\begin{array}{rcl} & & R_{-\lambda }(\widehat{A})f(t)\, = \frac{1} {1 - e^{-\lambda }}\int _{0}^{1}e^{-\lambda (t-x+1)}f(x)dx +\int _{ 0}^{t}e^{-\lambda (t-x)}f(x)dx{}\end{array}$$
(104)
$$\displaystyle\begin{array}{rcl} & & R_{\lambda }(\widehat{A}^{2})f(t) = \frac{1} {2\sqrt{\lambda }(1 - e^{\sqrt{\lambda }})}\int _{0}^{1}\left [e^{\sqrt{\lambda }(t-x+1)} + e^{-\sqrt{\lambda }(t-x)}\right ]f(x)dx \\ & & \phantom{mlmlmlmlmlm} + \frac{1} {2\sqrt{\lambda }}\int _{0}^{t}\left [e^{\sqrt{\lambda }(t-x)} - e^{-\sqrt{\lambda }(t-x)}\right ]f(x)dx. {}\end{array}$$
(105)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parasidis, I.N., Providas, E. (2016). Resolvent Operators for Some Classes of Integro-Differential Equations. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_24

Download citation

Publish with us

Policies and ethics