Skip to main content

A Tour on p(x)-Laplacian Problems When p = ∞

  • Chapter
  • First Online:
Mathematical Analysis, Approximation Theory and Their Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

  • 1494 Accesses

Abstract

Most of the times, in problems where the p(x)-Laplacian is involved, the variable exponent p(⋅ ) is assumed to be bounded. The main reason for this is to be able to apply standard variational methods. The aim of this paper is to present the work that has been done so far, in problems where the variable exponent p(⋅ ) equals infinity in some part of the domain. In this case the infinity Laplace operator arises naturally and the notion of weak solution does not apply in the part where p(⋅ ) becomes infinite. Thus the notion of viscosity solution enters into the picture. We study both the Dirichlet and the Neumann case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader can visit the website http://www.helsinki.fi/~pharjule/varsob/index.shtml for further details.

References

  1. Aronsson, G.: Minimization problems for the functional \(\sup _{x}F(x,f(x),f'(x))\). Ark. Mat. 6, 33–53 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronsson, G.: Extensions of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barles, G., Georgelin, C.A., Jakobsen, E.R.: On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations. J. Differ. Equ. 256(4), 1368–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhattacharya, T., DiBenedetto, E., Maneuverer, J.: Limits as \(p \rightarrow \infty\) of Δ p u p  = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino 1989, 15–68 (1991)

    MathSciNet  Google Scholar 

  6. Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7, 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y.M., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Evans, L.C., Gariepy, R.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Diening, L., Harjuleto, P., Hästö, P., Ruzisca, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture notes in mathematics, vol. 2017, Springer, Heidelberg, (2011). Available at http://www.helsinki.fi/~pharjule/varsob/publications.shtml

    Google Scholar 

  11. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), viii+66 (1999)

    Google Scholar 

  12. Edmunds, D.E., Rakosník, J.: Density of smooth functions in W k, p(x)(Ω). Proc. R. Soc. Lond. Ser. A 437, 229–236 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, X., Zhao, D.: On the spaces L p(x)(Ω) and W m, p(x)(Ω). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D.: The Neumann problem for the \(\infty\)-Laplacian and the Monge–Kantorovich mass transfer problem. Nonlinear Anal. 66, 349–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harjuleto, P., H\(\ddot{a}\) st\(\ddot{o}\), P., Koskenoja, M., Varonen, S.: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25(3), 205–222 (2006)

    Google Scholar 

  16. Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Ark. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karagiorgos, Y., Yannakakis, N.: A Neumann problem involving the p(x)-Laplacian with \(p = \infty\) in a subdomain. In: Advances in Calculus of Variations, pp. 1864–8266. De Gruyter, Berlin (Online) (2014). doi:10.1515/acv-2014-0003

  18. Keisala, J.: Existence and uniqueness of p(x)-harmonic functions for bounded and unbounded p(x). Licentiate thesis, Rep. Univ. Jyv\(\ddot{a}\) skyl\(\ddot{a}\) Dept. Math. Stat. 130 (2011). Available at http://www.helsinki.fi/~pharjule/varsob/publications.shtml

  19. Kovác̆ik, O., Rakosník, J.: On spaces L p(x) and W 1, p(x). Czech. Math. J. 41(116), 592–618 (1991)

    Google Scholar 

  20. Manfredi, J.J., Rossi, J.D., Urbano, J.M.: p(x)-harmonic functions with unbounded exponent in a subdomain. Ann. l’Inst. Henri Poincarè C. Anal. Non Linéaire 26 (6), 2581–2595 (2009)

    Google Scholar 

  21. Manfredi, J.J., Rossi, J.D., Urbano, J.M.: Limits as \(p(x) \rightarrow \infty\) of p(x)-harmonic functions. Nonlinear Anal. 72, 309–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pérez-Llanos, M., Rossi, J.D.: The behaviour of the p(x)-Laplacian eigenvalue problems \(p(x) \rightarrow \infty\). J. Math. Anal. Appl. 363, 502–511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pérez-Llanos, M., Rossi, J.D.: Limits as \(p(x) \rightarrow \infty\) of p(x)-harmonic functions with non-homogeneous Neumann boundary conditions. Contem. Math. AMS 540, 187–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruzicka, M.: Electrorheological Fluids: Modelling and Mathematical Theory. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  27. Samko, S.: Denseness of \(C_{0}^{\infty }(\mathbb{R}^{n})\) in the generalized Sobolev spaces \(W^{m,p(x)}(\mathbb{R}^{n})\). In: Direct and Inverse Problems of Mathematical Physics. International Society for Analysis, Applications and Computation, Newark, DE, 1997, vol. 5, pp. 333–342. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  28. Urbano, J.M., Vorotnikov, D.: On the well-posedness of a two-phase minimization problem. J. Math. Anal. Appl. 378, 159–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yao, J.: Solutions for Neumann boundary value problems involving p(x)-Laplace operators. Nonlinear Anal. 68, 1271–1283 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous referee for his useful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Yannakakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karagiorgos, Y., Yannakakis, N. (2016). A Tour on p(x)-Laplacian Problems When p = ∞. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_15

Download citation

Publish with us

Policies and ethics